0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Output-feedback controllers with guaranteed ℒ2-gain for continuous-time Lur'e systems using noncausal Zames–Falb multipliers

, , &
Received 10 Jun 2023, Accepted 26 Jul 2024, Published online: 09 Aug 2024

References

  • Abedor, J., Nagpal, K., & Poolla, K. (1996, November). A linear matrix inequality approach to peak-to-peak gain minimization. International Journal of Robust and Nonlinear Control, 6(9-10), 899–927. https://doi.org/10.1002/(SICI)1099-1239(199611)6:9/10<899::AID-RNC259>3.0.CO;2-G
  • Agulhari, C. M., Oliveira, R. C. L. F., & Peres, P. L. D. (2012, June). LMI relaxations for reduced-order robust H∞ control of continuous-time uncertain linear systems. IEEE Transactions on Automatic Control, 57(6), 1532–1537. https://doi.org/10.1109/TAC.2011.2174693
  • Ahmad, N. S., Carrasco, J., & Heath, W. P. (2013, December). LMI searches for discrete-time Zames–Falb multipliers. In Proceedings of the 52nd IEEE Conference on Decision and Control (pp. 5258–5263). Florence, Italy.
  • Ahmad, N. S., Heath, W. P., & Li, G. (2013, February). LMI-based stability criteria for discrete-time Lur'e systems with monotonic, sector- and slope-restricted nonlinearities. IEEE Transactions on Automatic Control, 58(2), 459–465. https://doi.org/10.1109/TAC.2012.2206721
  • Andersen, E. D., & Andersen, K. D. (2000). The MOSEK interior point optimizer for linear programming: An implementation of the homogeneous algorithm. In H. Frenk, K. Roos, T. Terlaky, & S. Zhang (Eds.), High performance optimization (Vol. 33, pp. 197–232). Springer US. http://www.mosek.com.
  • Bertolin, A. L. J., Oliveira, R. C. L. F., Valmorbida, G., & Peres, P. L. D. (2022a, August). Control design of uncertain discrete-time Lur'e systems with sector and slope bounded nonlinearities. International Journal of Robust and Nonlinear Control, 32(12), 7001–7015. https://doi.org/10.1002/rnc.v32.12
  • Bertolin, A. L. J., Oliveira, R. C. L. F., Valmorbida, G., & Peres, P. L. D. (2022b, August). Dynamic output-feedback control of continuous-time Lur'e systems using Zames–Falb multipliers by means of an LMI-based algorithm. IFAC-PapersOnLine, 55(25), 109–114. https://doi.org/10.1016/j.ifacol.2022.09.332. Proceedings of the 10th IFAC Symposium on Robust Control Design (ROCOND 2022).
  • Bertolin, A. L. J., Oliveira, R. C. L. F., Valmorbida, G., & Peres, P. L. D. (2022c). An LMI approach for stability analysis and output-feedback stabilization of discrete-time Lur'e systems using Zames–Falb multipliers. IEEE Control Systems Letters, 6, 710–715. https://doi.org/10.1109/LCSYS.2021.3086427
  • Boyd, S., El Ghaoui, L., Feron, E., & Balakrishnan, V. (1994). Linear matrix inequalities in system and control theory. SIAM Studies in Applied Mathematics.
  • Carrasco, J., Heath, W. P., Zhang, J., Ahmad, N. S., & Wang, S. (2020, November). Convex searches for discrete-time Zames–Falb multipliers. IEEE Transactions on Automatic Control, 65(11), 4538–4553. https://doi.org/10.1109/TAC.9
  • Carrasco, J., Maya-Gonzalez, M., Lanzon, A., & Heath, W. P. (2014, August). LMI searches for anticausal and noncausal rational Zames–Falb multipliers. Systems & Control Letters, 70, 17–22. https://doi.org/10.1016/j.sysconle.2014.05.005
  • Carrasco, J., Turner, M. C., & W. P. Heath (2016, March). Zames–Falb multipliers for absolute stability: From O'Shea's contribution to convex searches. European Journal of Control, 28, 1–19. https://doi.org/10.1016/j.ejcon.2015.10.003
  • Chang, X. H. (2014). Robust output feedback h-infinity control and filtering for uncertain linear systems. Springer.
  • Chang, M., Mancera, R., & Safonov, M. (2012, April). Computation of Zames–Falb multipliers revisited. IEEE Transactions on Automatic Control, 57(4), 1024–1029. https://doi.org/10.1109/TAC.2011.2169623
  • Chang, X. H., Park, J. H., & Zhou, J. (2015, August). Robust static output feedback H∞ control design for linear systems with polytopic uncertainties. Systems & Control Letters, 85, 23–32. https://doi.org/10.1016/j.sysconle.2015.08.007
  • Chen, X., & Wen, J. T. (1996, December). Robustness analysis for linear time-invariant systems with structured incrementally sector bounded feedback nonlinearities. International Journal of Applied Mathematics and Computer Science, 6(4), 623–648.
  • Crusius, C. A. R., & Trofino, A. (1999, May). Sufficient LMI conditions for output feedback control problems. IEEE Transactions on Automatic Control, 44(5), 1053–1057. https://doi.org/10.1109/9.763227
  • de Oliveira, M. C., & Skelton, R. E. (2001). Stability tests for constrained linear systems. In S.O. Reza Moheimani (Ed.), Perspectives in robust control (Vol. 268, pp. 241–257). Springer-Verlag.
  • Drummond, R., & Valmorbida, G. (2023, October). Generalised Lyapunov functions for discrete-time Lurie systems with slope-restricted nonlinearities. IEEE Transactions on Automatic Control, 68(10), 5966–5976. https://doi.org/10.1109/TAC.2022.3233540
  • Ebihara, Y. (2018, August). H2 analysis of LTI systems via conversion to externally positive systems. IEEE Transactions on Automatic Control, 63(8), 2566–2572. https://doi.org/10.1109/TAC.2017.2767704
  • Farina, L., & Rinaldi, S. (2000). Positive linear systems: Theory and applications. John Wiley & Sons.
  • Felipe, A., & Oliveira, R. C. L. F. (2021, September). An LMI-based algorithm to compute robust stabilizing feedback gains directly as optimization variables. IEEE Transactions on Automatic Control, 66(9), 4365–4370. https://doi.org/10.1109/TAC.2020.3038359
  • Fetzer, M., & Scherer, C. W. (2017a, February). Full-block multipliers for repeated, slope-restricted scalar nonlinearities. International Journal of Robust and Nonlinear Control, 27(17), 3376–3411. https://doi.org/10.1002/rnc.v27.17
  • Fetzer, M., & Scherer, C. W. (2017b, October). Zames–Falb multipliers for invariance. IEEE Control Systems Letters, 1(2), 412–417. https://doi.org/10.1109/LCSYS.2017.2718556
  • Geromel, J. C., de Souza, C. C., & Skelton, R. E. (1998, January). Static output feedback controllers: Stability and convexity. IEEE Transactions on Automatic Control, 43(1), 120–125. https://doi.org/10.1109/9.654912
  • Gomes da Silva Jr., J. M., Castelan, E. B., Corso, J., & Eckhard, D. (2013). Dynamic output feedback stabilization for systems with sector-bounded nonlinearities and saturating actuators. Journal of The Franklin Institute, 350(3), 464–484. https://doi.org/10.1016/j.jfranklin.2012.12.009
  • Gonzaga, C. A. C., Jungers, M., & Daafouz, J. (2012, September). Stability analysis of discrete-time Lur'e systems. Automatica, 48(9), 2277–2283. https://doi.org/10.1016/j.automatica.2012.06.034
  • Heath, W. P., Carrasco, J., & Zhang, J. (2024, January). Phase limitations of multipliers at harmonics. IEEE Transactions on Automatic Control, 69(1), 566–573. https://doi.org/10.1109/TAC.2023.3271855
  • Kalman, R. E. (1963, February). Lyapunov functions for problem of Lur'e in automatic control. Proceedings of the National Academy of Sciences of the United States of America, 49(2), 201–205. https://doi.org/10.1073/pnas.49.2.201
  • Kapila, V., & Haddad, W. M. (1996, January). A multivariable extension of the Tsypkin criterion using a Lyapunov-function approach. IEEE Transactions on Automatic Control, 41(1), 149–152. https://doi.org/10.1109/9.481622
  • Khalil, H. K. (2002). Nonlinear systems (3rd ed.). Prentice Hall.
  • Kharitenko, A., & Scherer, C. W. (2024). On the exactness of a stability test for discrete-time Lur'e systems with slope-restricted nonlinearities. IEEE Transactions on Automatic Control, 69(7), 4851–4858. https://doi.org/10.1109/TAC.2024.3362859
  • Kim, K. K., & Braatz, R. D. (2014, November). Observer-based output feedback control of discrete-time Luré systems with sector-bounded slope-restricted nonlinearities. International Journal of Robust and Nonlinear Control, 24(16), 2458–2472. https://doi.org/10.1002/rnc.3003
  • Kim, K. K., & Braatz, R. D. (2017, January/February). Robust static and fixed-order dynamic output feedback control of discrete-time parametric uncertain Luré systems: Sequential SDP relaxation approaches. Optimal Control Applications and Methods, 38(1), 36–58. https://doi.org/10.1002/oca.v38.1
  • Lee, S. M., & Park, J. H. (2008). Robust stabilization of discrete-time nonlinear Lur'e systems with sector and slope restricted nonlinearities. Applied Mathematics and Computation, 200(1), 429–436. https://doi.org/10.1016/j.amc.2007.11.031
  • Löfberg, J. (2004, September). YALMIP: A toolbox for modeling and optimization in MATLAB. In Proceedings of the 2004 IEEE International Symposium on Computer Aided Control Systems Design (pp. 284–289). Taipei, Taiwan. http://yalmip.github.io.
  • Louis, J., Jungers, M., & Daafouz, J. (2015a, December). Stabilization of sampled-data Lur'e systems with nonuniform sampling. In Proceedings of the 54th IEEE Conference on Decision and Control (pp. 2886–2881). Osaka, Japan.
  • Louis, J., Jungers, M., & Daafouz, J. (2015b, July). Switching control consistency of switched Lur'e systems with application to digital control design with non uniform sampling. In Proceedings of the 2015 European Control Conference (pp. 1754–1759). Linz, Austria.
  • Louis, J., Jungers, M., Daafouz, J., & Castelan, E. B. (2015, October). L2-induced gain for discrete-time switched Lur'e systems via a suitable Lyapunov function. IFAC-PapersOnLine, 48(25), 277–282. https://doi.org/10.1016/j.ifacol.2015.11.100. Proceedings of the 16th IFAC Workshop on Control Applications of Optimization (CAO'2015).
  • Megretski, A., & Rantzer, A. (1997, June). System analysis via integral quadratic constraints. IEEE Transactions on Automatic Control, 42(6), 819–830. https://doi.org/10.1109/9.587335
  • O'Shea, R. (1967, December). An improved frequency time domain stability criterion for autonomous continuous systems. IEEE Transactions on Automatic Control, 12(6), 725–731. https://doi.org/10.1109/TAC.1967.1098725
  • Park, P. (1997). A revisited Popov criterion for nonlinear Lur'e systems with sector-restrictions. International Journal of Control, 68(3), 461–470. https://doi.org/10.1080/002071797223479
  • Park, J., Lee, S. Y., & Park, P. (2019, October). A less conservative stability criterion for discrete-time Lur'e systems with sector and slope restrictions. IEEE Transactions on Automatic Control, 64(10), 4391–4395. https://doi.org/10.1109/TAC.9
  • Rantzer, A. (1996, June). On the Kalman–Yakubovich–Popov lemma. Systems & Control Letters, 28(1), 7–10. https://doi.org/10.1016/0167-6911(95)00063-1
  • Rieber, J. M., C. W. Scherer, & Allgöwer, F. (2008, April). Robust ℓ1 performance analysis for linear systems with parametric uncertainties. International Journal of Control, 81(5), 851–864. https://doi.org/10.1080/00207170701730451
  • Safonov, M., & Wyetzner, G. (1987, December). Computer-aided stability analysis renders Popov criterion obsolete. IEEE Transactions on Automatic Control, 32(12), 1128–1131. https://doi.org/10.1109/TAC.1987.1104510
  • Sánchez-Peña, R. S., & Sznaier, M. (1998). Robust systems: Theory and applications. John Wiley & Sons, Inc.
  • Su, L., Seiler, P., Carrasco, J., & Khong, S. Z. (2023, April). On the necessity and sufficiency of discrete-time O'Shea–Zames–Falb multipliers. Automatica, 150, 110872. https://doi.org/10.1016/j.automatica.2023.110872
  • Turner, M. C., & Drummond, R. (2020, April). Analysis of systems with slope restricted nonlinearities using externally positive Zames–Falb multipliers. IEEE Transactions on Automatic Control, 65(4), 1660–1667. https://doi.org/10.1109/TAC.9
  • Turner, M. C., & Drummond, R. (2021, April). Discrete-time systems with slope restricted nonlinearities: Zames–Falb multiplier analysis using external positivity. International Journal of Robust and Nonlinear Control, 31(6), 2255–2273. https://doi.org/10.1002/rnc.v31.6
  • Turner, M. C., & Kerr, M. L. (2012, September). L2 gain bounds for systems with sector bounded and slope-restricted nonlinearities. International Journal of Robust and Nonlinear Control, 22(13), 1505–1521. https://doi.org/10.1002/rnc.v22.13
  • Turner, M. C., Kerr, M., & Postlethwaite, I. (2009, November). On the existence of stable, causal multipliers for systems with slope-restricted nonlinearities. IEEE Transactions on Automatic Control, 54(11), 2697–2702. https://doi.org/10.1109/TAC.2009.2031581
  • Turner, M. C., Kerr, M., & Postlethwaite, I. (2012, September). Authors reply to “Comments on ‘On the existence of stable, causal multipliers for systems with slope-restricted nonlinearities’ ”. IEEE Transactions on Automatic Control, 57(9), 2428–2430. https://doi.org/10.1109/TAC.2011.2180809
  • Valmorbida, G., Drummond, R., & Duncan, S. R. (2019, March). Regional analysis of slope-restricted Lurie systems. IEEE Transactions on Automatic Control, 64(3), 1201–1208. https://doi.org/10.1109/TAC.2018.2849618
  • Veenman, J., & Scherer, C. W. (2014, November). IQC-synthesis with general dynamic multipliers. International Journal of Robust and Nonlinear Control, 24(17), 3027–3056. https://doi.org/10.1002/rnc.3042
  • Veenman, J., Scherer, C. W., Ardura, C., Bennani, S., Preda, V., & Girouart, B. (2021, July). IQClab: A new IQC based toolbox for robustness analysis and control design. IFAC-PapersOnLine, 54(8), 69–74. https://doi.org/10.1016/j.ifacol.2021.08.583. Proceedings of the 4th IFAC Workshop on Linear Parameter Varying Systems (LPVS 2021).
  • Wang, S., Carrasco, J., & Heath, W. P. (2018, April). Phase limitations of Zames–Falb multipliers. IEEE Transactions on Automatic Control, 63(4), 947–959. https://doi.org/10.1109/TAC.2017.2729162
  • Yang, C., Zhang, Q., & Zhou, L. (2007, June). Lur'e Lyapunov functions and absolute stability criteria for Lur'e systems with multiple nonlinearities. International Journal of Robust and Nonlinear Control, 17(9), 829–841. https://doi.org/10.1002/rnc.v17:9
  • Zames, G. (1966a, April). On the input-output stability of time-varying nonlinear feedback systems Part-I: Conditions derived using concepts of loop gain, conicity, and positivity. IEEE Transactions on Automatic Control, 11(2), 228–238. https://doi.org/10.1109/TAC.1966.1098316
  • Zames, G. (1966b, July). On the input-output stability of time-varying nonlinear feedback systems Part II: Conditions involving circles in the frequency plane and sector nonlinearities. IEEE Transactions on Automatic Control, 11(3), 465–476. https://doi.org/10.1109/TAC.1966.1098356
  • Zames, G., & Falb, P. L. (1968). Stability conditions for systems with monotone and slope-restricted nonlinearities. SIAM Journal on Control, 6(1), 89–108. https://doi.org/10.1137/0306007
  • Zhang, J., Carrasco, J., & Heath, W. P. (2022, July). Duality bounds for discrete-time Zames–Falb multipliers. IEEE Transactions on Automatic Control, 67(7), 3521–3528. https://doi.org/10.1109/TAC.2021.3095418
  • Zhou, K., Doyle, J. C., & Glover, K. (1996). Robust and optimal control. Prentice Hall.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.