255
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Dark current reduction in nano-avalanche photodiodes by incorporating multiple quantum barriers

&
Pages 1957-1973 | Received 01 Nov 2016, Accepted 17 Apr 2017, Published online: 25 May 2017

References

  • Acharyya, A., Banerjee, S., & Banerjee, J. P. (2014). Effect of photo-irradiation on the noise properties of double-drift silicon MITATT device. International Journal of Electronics, 101(9), 1270–1286. doi:10.1080/00207217.2013.830460
  • Acharyya, A., Chatterjee, S., Das, A., & Singh, K. A. (2015). Self-Consistent solution of schrödinger-poisson equations in a reverse biased nano-scale p-n junction based on Si/Si0.4Ge0.6/Si quantum well. Journal of Computational Electronics, 14, 180–191. doi:10.1007/s10825-014-0637-1
  • Acharyya, A., Mukherjee, M., & Banerjee, J. P. (2015). Effects of tunnelling current on mm-wave IMPATT Devices. International Journal of Electronics, 10(9), 1429–1456. doi:10.1080/00207217.2014.982211
  • Allmen, P. V., Berz, M., Petrocelli, G., Reinhart, F. K., & Harbeke, G. (1988). Inter-sub-band absorption in GaAs/AlGaAs quantum wells between 4.2 K and room temperature. Semiconductor Science and Technology, 3(12), 1211. doi:10.1088/0268-1242/3/12/010
  • Arthur, J. R. (2002). Molecular beam epitaxy. Surface Science, 500(1–3), 189–217. doi:10.1016/S0039-6028(01)01525-4
  • Barber, H. D. (1967). Effective mass and intrinsic concentration in silicon. Solid-State Electronics, 10(11), 1039–1051. doi:10.1016/0038-1101(67)90122-0
  • Bellotti, E., Nilsson, H. E., Brennan, K. F., & Ruden, P. P. (1999). Ensemble Monte Carlo calculation of hole transport in bulk 3C-SiC. Journal Applications Physical, 85(6), 3211–3217. doi:10.1063/1.369689
  • Campbell, J. C., Demiguel, S., Ma, F., Beck, A., Guo, X., Wang, S., Zheng, X., ... Tscherptner, A. (2002). Recent advances in avalanche photodiodes. IEEE Journal Sel Topics Quantum Electronic, 10, 777–797. doi:10.1109/JSTQE.2004.833971
  • Canali, C., Ottaviani, G., & Quaranta, A. A. (1971). Drift velocity of electrons and holes and associated anisotropic effects in silicon. Journal of Physics and Chemistry of Solids, 32, 1707–1720. doi:10.1016/S0022-3697(71)80137-3
  • Chen, Y., Zhang, X., Zhao, Q., He, L., Huang, C., & Xie, Z. (2011). P-type 3C-SiC nanowires and their optical and electrical transport properties. Chemical Communications, 22, 1–3.
  • Christodoulou, N. S. (2009). An algorithm using Runge-Kutta methods of orders 4 and 5 for systems of ODEs. International Journal of Numerical Methods and Applications, 2(1), 47–57.
  • Cooke, M. (2014). Expanding interest in cubic silicon carbide on silicon substrates. Semiconductor Today: Compounds & Advanced Silicon, 9(10), 82–85.
  • Costato, M., & Fontanesi, S. (1969). Studio delle proprietá fisiche del boro. Atti Sem Mat Fis University Modena, 18, 231–281.
  • Costato, M., & Reggiani, L. (1970). Temperature-dependence of the combined effective mass of holes in silicon. Lettere Al Nuovo Cimento, III(8), 239–245. doi:10.1007/BF02755754
  • Doudlas, J., & Yuan, Y. (1987). Finite difference method for the transient behavior of a semiconductor device. IMA Preprint Series #, 286, 1–20.
  • Electronic Archive: New Semiconductor Materials, Characteristics and Properties (2016). Retrieved from: http://www.ioffe.rssi.ru/SVA/NSM/Semicond/index.html
  • Ghosh, M., Ghosh, S., & Acharyya, A. (2016). Self-Consistent quantum drift-diffusion model for multiple quantum well IMPATT diodes. Journal of Computational Electronics, 1–18. published online. doi:10.1007/s10825-016-0894-2
  • Ghosh, M., Mondal, M., & Acharyya, A. (2013). The effect of electron versus hole photocurrent on opto-electric properties of p+-p-n-n+ Wz-GaN reach-through avalanche photodiodes. Advances in Optoelectronics, 2013, 1–12. doi:10.1155/2013/840931
  • Gopal, V., Singh, S. K., & Mehra, R. M. (2002). Analysis of dark current contributions in mercury cadmium telluride junction diodes. Infrared Physics and Technology, 43(6), 317–326. doi:10.1016/S1350-4495(02)00159-7
  • Grant, W. N. (1973). Electron and hole ionization rates in epitaxial Silicon. Solid State Electronics, 16, 1189–1203. doi:10.1016/0038-1101(73)90147-0
  • Hayden, O., Agarwal, R., & Lieber, C. M. (2006). Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection. Nature Materials, 5, 352–356. doi:10.1038/nmat1635
  • Jalali, M., Moravvej-Farshi, M. K., Masudy-Panah, S., & Nabav, A. (2010). An equivalent lumped circuit model for thin avalanche photodiodes with nonuniform electric field profile. Journal of Lightwave Technology, 28, 3395–3402.
  • Kane, E. O. (1956). Energy band structure in p-type germanium and silicon. Journal of Physics and Chemistry of Solids, 1(1–2), 82–99. doi:10.1016/0022-3697(56)90014-2
  • Kane, E. O. (1960). Zener tunnelling in semiconductors. Journal Physical Chemical Solid, 12(2), 181–188. doi:10.1016/0022-3697(60)90035-4
  • Kane, E. O. (1961). Theory of tunnelling. Journal of Applications Physical, 32, 83–91. doi:10.1063/1.1735965
  • Kane, M. J., Emeny, M. T., Apsley, N., Whitehouse, C. R., & Lee, D. (1988). Inter-sub-band absorption in GaAs/AlGaAs single quantum wells. Semiconductor Science and Technology, 3(7), 722. doi:10.1088/0268-1242/3/7/015
  • Kao, K. H., Verhulst, A. S., Vandenberghe, W. G., Sorée, B., Groeseneken, G., & Meyer, K. D. (2012). Direct and indirect band-to-band tunnelling in germanium-based TFETs. IEEE Transactions on Electronics Devices, 59(2), 292–301. doi:10.1109/TED.2011.2175228
  • Lax, B., & Mavroides, J. G. (1955). Statistics and galvanomagnetic effects in germanium and silicon with warped energy surfaces. Physical Reviews, 100, 1650–1656. doi:10.1103/PhysRev.100.1650
  • Liu, G., Chen, W., Liu, L., Jin, P., Tian, Y., & Yang, J. (2016). A theory study of the multiplication characteristics of InP/InGaAs avalanche photodiodes with double multiplication layers and double charge layers. Optics Communications, 374, 114–118. doi:10.1016/j.optcom.2016.04.036
  • Manning, R. J., Bradley, P. J., Miller, A., Roberts, J. S., Mistry, P., & Pate, M. (1988). Photoconductive response time of a multiple quantum well pin modulator. Electronics Letters, 24(14), 854–855. doi:10.1049/el:19880581
  • Masudy-Panah, S. (2011). Nonlocal analysis to study of the impact ionization and avalanche characteristics of deep submicron Si devices. Solid State Communications, 151, 610–614. doi:10.1016/j.ssc.2011.02.003
  • Masudy-Panah, S., & Moravvej-Farshi, M. K. (2010). An analytic approach to study the effects of optical phonon scattering loss on the characteristics of avalanche photodiodes. IEEE Journal of Quantum Electronics, 46, 533–540. doi:10.1109/JQE.2010.2040064
  • Masudy-Panah, S., Moravvej-Farshi, M. K., & Jalali, M. (2009). Temperature dependent characteristics of submicron GaAs avalanche photodiodes obtained by a nonlocal analysis. Optics Communications, 282, 3630–3636. doi:10.1016/j.optcom.2009.05.048
  • Masudy-Panah, S., & Tikkiwal, V. A. (2015). Velocity enhancement in APDs with sub-100-nm multiplication region. Optics Communications, 346, 167–171. doi:10.1016/j.optcom.2015.02.043
  • May, C. P. (2005). Impact ionization rate calculations for device simulation. ETH, Eidgenössische Technische Hochschule Zürich, Integrated Systems Laboratory.
  • Menkara, H. M., Wagner, B. K., & Summers, C. J. (1995). Gain properties of doped GaAs/AlGaAs multiple quantum well avalanche photodiode structures. Applications Physical Letters, 66, 1764. doi:10.1063/1.113360
  • Mickevicius, R., & Zhao, J. H. (1998). Monte Carlo study of electron transport in SiC. Journal Applications Physical, 83(6), 3161–3167. doi:10.1063/1.367073
  • Othman, M. A., Taib, S. N., Husain, M. N., & Napiah, Z. A. F. M. (2004). Reviews on avalanche photodiode for optical communication technology. ARPN Journal of Engineering and Applied Sciences, 9(1), 35–44.
  • Rahman, A., Lundstrom, M. S., & Ghosh, A. W. (2005). Generalized effective mass approach for n-type metal–oxide–semiconductor field-effect transistors on arbitrary oriented wafers. Journal Applications Physical, 97(5), 053 702-1–053 702-12. doi:10.1063/1.1845586
  • Selberherr, S. (1984). Analysis and simulation of semiconductor devices. Wien: Springer Verlag.
  • Stern, F. (1970). Iteration methods for calculating self-consistent fields in semiconductor inversion layers. Journal of Computational Physics, 6(1), 56–67. doi:10.1016/0021-9991(70)90004-5
  • Sze, S. M., & Ng, K. K. (2010). Physics of semiconductor devices (3rd Edition ed.). India: Willy.
  • Tandon, J. C., & Roulston, D. J. (1969). Low frequency characterization of a photo-diode self-biased by a high frequency pump. International Journal of Electronics, 26(4), 319–322. doi:10.1080/00207216908938164
  • Vandenberghe, W. G., Sorée, B., Magnus, W., & Groeseneken, G. (2010). Zener tunneling in semiconductors under nonuniform electric fields. Journal Applications Physical, 107(5), 054 520-1–054 520-3. doi:10.1063/1.3311550
  • Verhulst, A. S., Vandenberghe, W. G., Maex, K., & Groeseneken, G. (2008). Boosting the on-current of a n-channel nanowire tunnel field-effect transistor by source material optimization. Journal Applications Physical, 104(6), 064 514-1–064 514-10. doi:10.1063/1.2981088
  • Vyas, H. P., Gutmann, R. J., & Borrego, J. M. (1979). Effect of hole versus electron photocurrent on microwave-optical interactions in Impatt oscillators. IEEE Transactions on Electron Devices, 26(3), 232–234. doi:10.1109/T-ED.1979.19411
  • Wêgrzecka, I., Wêgrzecki, M., Grynglas, M., Bar, J., Uszyñski, A., Grodecki, R., … Budzyñski, T. (2004). Design and properties of silicon avalanche photodiodes. Opto-Electronics Review, 12(1), 95–104.
  • Weisbuch, C., & Vinter, B. (1991). Quantum semiconductor structures. New York: Academic Press Inc.
  • Xu, J., Chen, X., Wang, W., & Lu, W. (2016). Extracting dark current components and characteristics parameters for InGaAs/InP avalanche photodiodes. Infrared Physics & Technology, 76, 468–473. doi:10.1016/j.infrared.2016.04.004
  • Yang, L., Dzhosyuk, S. N., Gabrielse, J. M., Huffman, P. R., Mattoni, C. E. H., Maxwell, S. E., … Doyle, J. M. (2003). Performance of a large-area avalanche photodiode at low temperature for scintillation detection. Nuclear Instruments and Methods in Physics Research, A, 508, 388–393. doi:10.1016/S0168-9002(03)01665-6
  • Yan-Kun, D., Xin, Q., Hai-Bo, J., Mao-Sheng, C., Zahid, U., & Zhi-Ling, H. (2012). First principle study of the electronic properties of 3C-SiC doped with different amounts of Ni. Chinese Physical Letters, 29(7), 077701. doi:10.1088/0256-307X/29/7/077701
  • Zeghbroeck, B. V. (2011). Principles of semiconductor devices. USA: Colorado Press.
  • Zwerdling, S., Button, K. J., Lax, B., & Roth, L. M. (1960). Internal impurity levels in semiconductors: Experiments in p-Type silicon. Physical Review Letters, 4(2), 173. doi:10.1103/PhysRevLett.4.173

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.