340
Views
14
CrossRef citations to date
0
Altmetric
Articles

The analysis of the electrical characteristics and interface state densities of Re/n-type Si Schottky barrier diodes at room temperature

& ORCID Icon
Pages 507-520 | Received 05 Mar 2018, Accepted 30 Sep 2018, Published online: 17 Nov 2018

References

  • Ahmad, Z., & Sayyad, M. H. (2009). Electrical characteristics of a high rectification ratio organic Schottky diode based on methyl red. Optoelectronics and Advanced Materials: Rapid Communications, 3, 509.
  • Akkılıç, K., Ocak, Y. S., Kılıçoğlu, T., İlhan, S., & Temel, H. (2010). Calculation of current–voltage characteristics of a Cu (II) complex/n-Si/AuSb Schottky diode. Current Applied Physics, 10, 337.
  • Alialy, S., Tecimer, H., Uslu, H., & Altındal, Ş. (2013). A Comparative Study on Electrical Characteristics of Au/N-Si Schottky Diodes, with and Without Bi-Doped PVA Interfacial Layer in Dark and Under Illumination at Room Temperature. Journal of Nanomedicine and Nanotechnology, 4, 2.
  • Altındal, Ş., Tataroğlu, A., & Dökme, İ. (2005). Density of interface states, excess capacitance and series resistance in the metal–insulator–semiconductor (MIS) solar cells. Solar Energy Materials & Solar Cells, 85, 345.
  • Card, H. C., & Rhoderick, E. H. (1971). Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes. Journal of Physics D: Applied Physics, 4, 1589.
  • Chattopadhyay, P. (1995). A new technique for the determination of barrier height of Schottky barrier diodes. Solid-State Electronics, 38, 739.
  • Cheung, S. K., & Cheung, N. W. (1986). Extraction of Schottky diode parameters from forward current-voltage characteristics. Applied Physics Letters, 49, 85.
  • Chizh, K. V., Chapnin, V. A., Kalinushkin, V. P., Resnik, V. Y., Storozhevykh, M. S. A., & Yuryev, V. A. (2013). Metal silicide/poly-Si Schottky diodes for uncooled microbolometers. Nanoscale Research Letters, 8, 177.
  • Demirezen, S., Altındal, Ş., & Uslu, İ. (2013). Two diodes model and illumination effect on the forward and reverse bias I–V and C–V characteristics of Au/PVA (Bi-doped)/n-Si photodiode at room temperature. Current Applied Physics, 13, 53.
  • Dhruv, D. K., & Patel, D. H. (2016). Fabrication and electrical characterization of Al/p-ZnIn2Se4 thin film Schottky diode structure. Materials Science in Semiconductor Processing, 54, 29.
  • Durmuş, H., Kılıç, H. Ş., Gezgin, S. Y., & Karataş, Ş. (2018). Analysis of current-voltage-temperature and capacitance-voltage-temperature characteristics of Re/n-Si Schottky contacts. Silicon, 10, 3619.
  • Hudai, M. K., & Kruppanidhi, S. B. (2000). Effects of thin oxide in metal–semiconductor and metal–insulator–semiconductor epi-GaAs Schottky diodes. Solid-State Electronics, 44, 1089.
  • Hwang, J. D., & Lee, K. S. (2008). A high rectification ratio nanocrystalline p–N junction diode prepared by metal-induced lateral crystallization for solar cell applications. Journal of the Electrochemical Society, 155, H259.
  • Janardhanam, V., Kil, Y. H., Shim, K. H., Reddy, V. R., & Choi, C. J. (2013). Effect of rapid thermal annealing on the electrical and structural properties of Se Schottky contacts to n-type Si. Materials Transactions, 54, 1067.
  • Janardhanam, V., Park, Y. K., Yun, H. J., Ahn, K. S., & Choi, C. J. (2012). Conduction mechanism of Se Schottky contact to n-type Ge. IEEE Electron Device Letters, 33, 949.
  • Kabra, V., Aamir, L., Malik, M. M., & Beilstein, M. M. (2014). Low cost, p-ZnO/n-Si, rectifying, nano heterojunction diode: Fabrication and electrical characterization. Beilstein. Journal of Nanotechnology, 5, 2216.
  • Karataş, Ş., & Altındal, Ş. (2005). Analysis of I–V characteristics on Au/n-type GaAs Schottky structures in wide temperature range. Materials Science and Engineering B, 122, 133.
  • Karataş, Ş., Aydin, M. G., & Özerli, H. (2016). Illumination impact on electrical properties of Ag/0.6 wt% nanographene oxide doped poly(vinyl alcohol) nanocomposite/p-Si heterojunction. Journal of Alloys and Compounds, 689, 1068.
  • Karataş, Ş., Yıldırım, N., & Türüt, A. (2013). Electrical properties and interface state energy distributions of Cr/n-Si Schottky barrier diode. Superlattices and Microstructures, 64, 483.
  • Kılıçoğlu, T. (2008). Effect of an organic compound (Methyl Red) interfacial layer on the calculation of characteristic parameters of an Al/Methyl Red/p-Si sandwich Schottky barrier diode. Thin Solid Films, 516, 967.
  • Kılıçoğlu, T., & Asubay, S. (1999). The Experimental and Theoretical Comparison of Characteristic Parameters of Au-Sb/n-Si/Au Schottky Diodes With and Without Layer. International Journal for Manufacturing Science and Production, 2, 151.
  • Lin, C. C., & Wu, M. C. (1999). Electrical and structural properties of Re/GaAs Schottky diodes. Journal of Applied Physics, 85, 3893.
  • Mohanta, K., Batabyal, S. K., & Pal, A. J. (2008). Organization of organic molecules with inorganic nanoparticles: Hybrid nanodiodes. Advanced Functional Materials, 18, 687.
  • Mönch, W. (2001). Semiconductor surfaces and interfaces. Berlin: Springer.
  • Nicollian, E. H., & Brews, J. R. (1982). Metal-oxide-semiconductor physics and technology. New York: Wiley Press.
  • Norde, H. (1979). Journal of Applied Physics, 50, 5052–5053.
  • Nuhoğlu, Ç., Aydoğan, Ş., & Türüt, A. (2003). The barrier height inhomogeneity in identically prepared Pb/p-type Si Schottky barrier diodes. Semiconductor Science and Technology, 18, 642.
  • Ozerli, H., Bekereci, A., Türüt, A., & Karatas, Ş. (2017). Electrical and photovoltaic properties of Ag/p-Si structure with GO doped NiO interlayer in dark and under light illumination. Journal of Alloys and Compounds, 718, 75.
  • Rao, G. V., Chandra, G. H., Hussain, O. M., Uthanna, S., & Naidu, B. S. (2001). Characteristics of Al/p-Cu0.5Ag0.5InSe2 polycrystalline thin film Schottky barrier diodes. Crystal Research and Technology, 36, 571.
  • Rebaoui, Z., Bouiajra, W. B., Abid, M. A., Saidane, A., Jammel, D., Henini, M., & Felix, J. F. (2017). SiC polytypes and doping nature effects on electrical properties of ZnO-SiC Schottky diodes. Microelectronic Engineering, 171, 11.
  • Rhoderick, E. H., & Williams, R. H. (1988). Metal-semiconductor contacts. Oxford: Clarendon Press.
  • Schmitsdorf, R. F., Kampen, T. U., & Monch, W. (1995). Correlation between barrier height and interface structure of Schottky diodes. Surface Science, 324, 249.
  • Shalish, I., & Yoram, S. (2000). Thermal stability of Re Schottky contacts to 6H-SiC. IEEE Electron Device Letters, 21, 581.
  • Sze, S. M. (2006). Physics of semiconductor devices. New York: Wiley Press.
  • Taşdemir, İ. H., Vural, Ö., & Dökme, İ. (2016). Philosophy Magazines, 96, 1684.
  • Tung, R. T. (1991). Electron transport of inhomogeneous Schottky barriers. Applied Physics Letters, 58, 2821.
  • Tung, R. T. (1992). Electron transport at metal-semiconductor interfaces: General theory. Physical Review B: Condensed Matter, 45, 13509–13523.
  • Venugopalan, H. S., & Mohney, S. E. (1998). Applied Physics Letters, 73, 1242.
  • Werner, J. H., & Guttler, H. H. (1991). Barrier inhomogeneities at Schottky contacts. Journal of Applied Physics, 69, 1522.
  • Yuan, Z. (2014). A photodiode with high rectification ratio and low turn-on voltage based on ZnO nanoparticles and SubPc planar heterojunction. Physica E, 56, 160.
  • Zeyada, H. M., El-Nahass, M. M., El-Menyawy, E. M., & El-Sawah, A. S. (2015). Electrical and photovoltaic characteristics of indium phthalocyanine chloride/p-Si solar cell. Synthetic Metals, 207, 46.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.