144
Views
10
CrossRef citations to date
0
Altmetric
Articles

A 4:1 Multiplexer using dual chirality CNTFET-based domino logic in nano-scale technology

ORCID Icon, &
Pages 513-541 | Received 18 Jan 2019, Accepted 02 Sep 2019, Published online: 16 Sep 2019

References

  • Abiri, E., & Darabi, A. (2015). Design of low power and high read stability 8T-SRAM memory based on the modified gate diffusion input (m-GDI) in 32 nm CNTFET technology. Microelectronics Journal, 46(12), 1351–1363.
  • Anis, M., Areibi, S., & Elmasry, M. (2003). Design and optimization of multi-threshold CMOS (MTCMOS) circuit. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 22(10), 1324–1342.
  • Asyaei, M., & Moradi, F. (2018). A domino circuit technique for noise-immune high Fan-in gates. Journal of Circuits, Systems, and Computers, 27(10), 1–23.
  • Cheng, C. H., Chang, S. C., Wang, J. S., & Jone, W. B. (1999). Charge sharing fault detection for CMOS domino logic circuits. In International Symposium on Defect and Fault Tolerance in VLSI Systems (pp. 77–85). Albuquerque, New Mexico. doi: 10.1109/DFTVS.1999.802872.
  • Dadashi, A., Mirmotahari, O., & Berg, Y. (2016). NP domino, Ultra-low-voltage, High-speed, Dual-rail, CMOS NOR gates. Circuits and Systems, 7(8), 1916–1926.
  • Deng, J. (2007). A compact SPICE model for carbon-nanotube field-effect transistors including non-idealities its application—Part I: Model of the intrinsic channel region. IEEE Transactions on Electron Devices, 54(12), 3186–3194.
  • Garg, S., & Gupta, T. K. (2018a). Low Power domino logic circuits in deep-submicron technology using CMOS. Engineering Science and Technology, an International Journal, 21(4), 625–638.
  • Garg, S., & Gupta, T. K. (2018b). A new technique for designing low power high-speed domino logic circuits in FinFET technology. Journal of Circuit, System and Computers. doi:10.1142/S0218126619501652
  • Garg, S., & Gupta, T. K. (2019a). Very low power domino logic circuits using carbon nanotube field effect transistor technology. Journal of Nanoelectronics and Optoelectronics, 14(1), 19–32.
  • Garg, S., & Gupta, T. K. (2019b). A low leakage domino logic circuit for wide fan-in gates using CNTFET. IET Circuits, Devices & Systems, 13(2), 163–173.
  • Gong, N., Guo, B., Lou, J., & Wang, J. (2008). Analysis and optimization of leakage current characteristics in Sub-65 nm dual Vt footed domino circuits. Microelectronics Journal, 39, 1149–1155.
  • Gupta, T. K., & Khare, K. (2013). Lector with footed-diode inverter: A Technique for leakage reduction in domino. Circuits. Circuits Systems and Signal Processing, 32(6), 2707–2722.
  • Gupta, T. K., Pandey, A. K., & Meena, O. P. (2017). Analysis and design of lector-based dual-Vt domino logic with reduced leakage current. Circuit World, 43(3), 97–104.
  • Hajare, R., Lakshminarayana, C., Raghunandan, G. H., & Raj, C. P. (2015). Performance enhancement of FINFET and CNTFET at different node technologies. Microsystem Technologies, 22(5), 1121–1126.
  • Javey, A., & Kong, J. (2009). Carbon nanotube electronics (pp. 75). United States, US: Springer. ISBN 978-0-387-69285-2.
  • Kaushik, B. K., & Majumder, M. K. (2015). Carbon nanotube-based VLSI Interconnects (pp. 17). India: Springer. ISBN 978-81-322-2047-3.
  • Lin, S., Kim, Y. B., & Lombardi, F. (2010). Design of a CNTFET-based SRAM cell by dual-chirality selection. IEEE Transactions on Nanotechnology, 9(1), 30–37.
  • Mahmoodi, H., & Roy, K. (2004). Diode footed domino: A leakage tolerant high fan-in dynamic circuit design style. IEEE Transactions on Circuits and Systems, 51(3), 495–503.
  • Mahor, V., & Pattanaik, M. (2018). A state-of-the-art current mirror-based reliable wide Fan-in FinFET domino OR gate design. Circuits, Systems, and Signal Processing, 37(2), 475–499.
  • Moaiyeri, M. H., Afshin, R., Sharifi, F., & Navi, K. (2017). Design and evaluation of energy-efficient carbon nanotube FET-based quaternary minimum and maximum circuits. Journal of Applied Research and Technology, 5(3), 233–241.
  • Moaiyeri, M. H., & Razi, F. (2017). Performance analysis and enhancement of 10-nm GAA CNTFET-based circuits in the presence of CNT-metal contact resistance. Journal of Computational Electronics, 16(2), 240–252.
  • Moradi, F., Cao, T. V., Vatajelu, E. I., Peiravi, A., Mahmoodi, H., & Wisland, D. T. (2013). Domino logic designs for high-performance and leakage tolerant applications. Integration, the VLSI Journal, 46(3), 247–254.
  • Moradi, F., Mahmoodi, H., & Peiravi, A. (2005). A high speed and leakage-tolerant domino logic for high fan-in gates. In Procedings of 15th ACM Great Lakes Symposium on VLSI (GLSVLSI) (pp. 478–481). Chicago, USA. doi: 10.1145/1057661.1057775.
  • Moradi, F., Peiravi, A., & Mahmoodi, H. (2004). A new leakage-tolerant design for high fan-in domino gates. In Proceedings of 16th Intetrnational Conference on Microelectronics (pp. 493–496). Tunisia. doi: 10.1109/ICM.2004.1434707.
  • Muralidharan, J., & Manimegalai, P. (2017). Current comparison domino based CHSK domino logic technique for rapid progression and low power alleviation. International Journal of Electrical and Computer Engineering, 7(5), 2468–2473.
  • Nan, L., XiaoXin, C., Kai, L., Kai Sheng, M. A., Wu, D., Wei, W. E. I., … DunShan, Y. U. (2014a). Low power adiabatic logic based on FinFETs. Science China, 57(2), 1–13. ISSN. 022402:1–022402
  • Nazer, A., Chehab, A., & Kayssi, A. (2008). Dynamic current testing for CMOS domino circuits. International Journal of Electronics, 95(6), 577–592.
  • Peiravi, A., & Asyaei, M. (2013). Current-comparison-based domino: New low-leakage high-speed domino circuit for wide fan-in gates. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 21(5), 934–943.
  • Peiravi, A., Moradi, F., & Wisland, D. T. (2009). Leakage tolerant, noise immune domino logic for circuit design in the ultra deep submicron CMOS technology for high fan-in gates. Journal of Applied Science, 9(2), 392–396.
  • Peng, L. M., Zhang, Z., & Wang, S. (2014). Carbon nanotube electroniocs: Recent advances. Materials Today, 17(9), 433–442.
  • Predictive Technology Model (2006). Retrieved from http://ptm.asu.edu/modelcard/2006/32nm_bulk.pm
  • Qin, L. C. (2007). Determination of the chiral indices (n,m) of carbon nanotubes by electron diffraction. Physical Chemistry Chemical Physics, 9(1), 31–48.
  • Roy, K., Mukhopadhyay, S., & Mahmoodi, H. (2003). Leakage current mechanisms and leakage reduction techniques in deep-submicron CMOS circuits. Proceedings of the IEEE, 91(2), 305–327.
  • Sayed, S. I., Abutaleb, M. M., & Nossair, Z. B. (2016). Optimization of CNFET parameters for high performance digital circuits. Advances in Materials Science and Engineering, 2016. doi:10.1155/2016/6303725
  • Shanbhag, N., Soumyanath, K., & Martin, S. (2000). Reliable low-power design in the presence of deep submicron noise. In Proceedings of ISLPED (pp. 295–302). Rapallo. doi:10.1109/LPE.2000.155302
  • Stanford CNFET Model (2008). Retrieved from https://nano.stanford.edu/stanford-cnfet-model-hspice
  • Sun, Y., He, W., Mao, Z., & Kursun, V. (2017). Variable strength keeper for high-speed and low-leakage carbon nanotube domino logic. Microelectronics Journal, 62, 12–20.
  • Talebipour, N., & Keshavarzian, P. (2017). CNTFET-based design of multi-bit adder circuits. International Journal of Electronics, 104(5), 805–820.
  • Wang, X., Qunqing, L., Jing, X., Zhong, J., Jinyong, W., Yan, L., … Shoushan, F. (2009). Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates. Nano Letters, 9(9), 3137–3141.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.