278
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

An Inverter Amplifier with Resistive Feedback Current Mirror Gilbert Mixer

, , &
Pages 221-244 | Received 15 Mar 2021, Accepted 05 Dec 2021, Published online: 05 Feb 2022

References

  • Abidi, A. A. (1998). Direct-conversion radio transceivers for digital communications. Integrated Circuits for Wireless Communications, 30(12), 135–146. https://doi.org/10.1109/9780470544952.ch2
  • Alotaibi, M. (2020). A double-balanced up-conversion mixer using 90 nm CMOS technology for 60 GHz spectrum frequency. IETE Journal of Research, 66(6), 751–755. https://doi.org/10.1080/03772063.2019.1565959
  • Asghari, M., & Yavari, M. (2016). An IIP3 enhancement technique for CMOS active mixers with a source-degenerated transconductance stage. Microelectronics Journal, 50 Apr 1 , 44–49. https://doi.org/10.1016/j.mejo.2016.01.008
  • Benali, S., & Trabelsi, H. (2020). Analysis of 25% duty-cycle up-conversion passive mixer for UWB transmitter. AEU - International Journal of Electronics and Communications, 123 Aug 1 , 153295. https://doi.org/10.1016/j.aeue.2020.153295
  • Bhatt, D., Member, S., Mukherjee, J., & Member, S. (2016). Low-power linear bulk-injection mixer for. 26(10), 828–830 doi:10.1109/LMWC.2016.2605301.
  • Binkley, D. M. (2007). Tradeoffs and optimization in analog CMOS design. Proceedings of the 14th International Conference “Mixed Design of Integrated Circuits and Systems”, MIXDES 2007, 2 , 47–60. doi:10.1109/MIXDES.2007.4286119 doi:
  • Bucher, M., Binkley, D., & Foty, D. (2002). Analysis of transconductances at all levels. Ieeexplore.Ieee.Org , 1183–1186. http://ieeexplore.ieee.org/abstract/document/1046464
  • Chang, F. C., Huang, P. C., Chao, S. F., & Wang, H. (2007). A low power folded mixer for UWB system applications in 0.18-μm CMOS technology. IEEE Microwave and Wireless Components Letters, 17(5), 367–369. https://doi.org/10.1109/LMWC.2007.895715
  • Chang, C. H., & Onabajo, M. (2013). IIP3 enhancement of subthreshold active mixers. IEEE Transactions on Circuits and Systems II: Express Briefs, 60(11), 731–735. https://doi.org/10.1109/TCSII.2013.2278115
  • Chen, J., & Jian, M. (2021). A 1. 5 – 7 GHz wideband low-voltage low-power switched transconductor up-conversion mixer. AEUE - International Journal of Electronics and Communications, 153681. https://doi.org/10.1016/j.aeue.2021.153681
  • Chiou, H. K., Lin, K. C., Chen, W. H., & Juang, Y. Z. (2012). A 1-V 5-GHz self-bias folded-switch mixer in 90-nm CMOS for WLAN receiver. IEEE Transactions on Circuits and Systems I: Regular Papers, 59(6), 1215–1227. https://doi.org/10.1109/TCSI.2011.2173399
  • Chong, W. K., Ramiah, H., Tan, G. H., Vitee, N., & Kanesan, J. (2014). Design of ultra-low voltage integrated CMOS based LNA and mixer for ZigBee application. AEU - International Journal of Electronics and Communications, 68(2), 138–142. https://doi.org/10.1016/j.aeue.2013.07.009
  • Chrisben Gladson, S., Bhaskar, M., Praveen, R., & Sudharsan, S. (2019). A 261-µW ultra-low power RF mixer with 26-dBm IIP3 using complementary pre-distortion technique for IEEE 802.15.4 applications. AEU - International Journal of Electronics and Communications, 107 1 , 70–82. https://doi.org/10.1016/j.aeue.2019.05.004
  • Darabi, H., & Abidi, A. A. (2000). Noise in RF-CMOS mixers: A simple physical model. IEEE Journal of Solid-State Circuits, 35(1), 15–25. https://doi.org/10.1109/4.818916
  • Heiberg, A. C., Brown, T. W., Fiez, T. S., & Mayaram, K. (2011). A 250 mV, 352 μW GPS receiver RF front-end in 130 nm CMOS. IEEE Journal of Solid-State Circuits, 46(4), 938–949. https://doi.org/10.1109/JSSC.2011.2109470
  • Huang, W. H., Huang, I. Y., Tseng, Y. S., Hsieh, C. H., & Wang, C. C. (2017). A 19.38 dBm OIP3 gm-boosted up-conversion CMOS mixer for 5–6 GHz application. Microelectronics Journal, 60(December 2016), 38–44. https://doi.org/10.1016/j.mejo.2016.11.017
  • Kim, M. G., An, H. W., Kang, Y. M., Lee, J. Y., & Yun, T. Y. (2012). A low-voltage, low-power, and low-noise UWB mixer using bulk-injection and switched biasing techniques. IEEE Transactions on Microwave Theory and Techniques, 60(8), 2486–2493. https://doi.org/10.1109/TMTT.2012.2198238
  • Lai, X., & Yuan, F. (2011). A comparative study of low-power CMOS Gilbert mixers in weak and strong inversion. 54th International Midwest Symposium on Circuits and Systems (MWSCAS), 2 (IEEE), 1–4. https://doi.org/10.1109/MWSCAS.2011.6026681
  • Lee, J. Y., & Yun, T. Y. (2017). Low-flicker-noise and high-gain mixer using a dynamic current-bleeding technique. IEEE Microwave and Wireless Components Letters, 27(8), 733–735. https://doi.org/10.1109/LMWC.2017.2723979
  • Li, J., & Gu, Q. J. (2019). Harmonic-based nonlinearity factorization of switching behavior in up-conversion mixers. IEEE Transactions on Circuits and Systems I: Regular Papers, 66(7), 2468–2477. https://doi.org/10.1109/TCSI.2019.2897584
  • Liang, K. H., Chang, H. Y., & Chan, Y. J. (2007). A 0.5-7.5 GHz ultra low-voltage low-power mixer using bulk-injection method by 0.18-μm CMOS technology. IEEE Microwave and Wireless Components Letters, 17(7), 531–533. https://doi.org/10.1109/LMWC.2007.899319
  • Lioe, D. X., Shafie, S., Ramiah, H., & Tan, G. H. (2014). Low power upconversion mixer for medical remote sensing. The Scientific World Journal, 2014(July), 1–5. https://doi.org/10.1155/2014/923893
  • Perumana, B. G., Mukhopadhyay, R., Chakraborty, S., Lee, C. H., & Laskar, J. (2008). A low-power fully monolithic subthreshold CMOS receiver with integrated LO generation for 2.4 GHz wireless PAN applications. IEEE Journal of Solid-State Circuits, 43(10), 2229–2238. https://doi.org/10.1109/JSSC.2008.2004330
  • Qin, P., & Xue, Q. (2017). A low-voltage folded-switching mixer using area-efficient CCG transconductor. IEEE Transactions on Circuits and Systems II: Express Briefs, 64(8), 877–881. https://doi.org/10.1109/TCSII.2016.2611609
  • Ragheb, A. N., & Kim, H. (2016). Ultra low power wide-band mixer circuit based on subthreshold operation for MB-OFDM UWB. Microelectronics Journal, 50 C , 29–34. https://doi.org/10.1016/j.mejo.2016.01.005
  • Rahman, M., Elbadry, M., & Harjani, R. (2014). A 2.5 nJ/bit multiband (MBAN & ISM) transmitter for IEEE 802.15. 6 based on a hybrid polyphase-MUX/ILO based modulator. IEEE Radio Frequency Integrated Circuits Symposium. 17–20.
  • Rahman, M., Member, S., Elbadry, M., & Harjani, R. (2015). An IEEE 802.15. 6 standard compliant 2.5 nJ/bit multiband WBAN transmitter using phase multiplexing and injection locking IEEE Journal of Solid-State Circuits . 50(5), 1–11 doi:10.1109/JSSC.2015.2402214.
  • Razavi, B. (1997). Design considerations for direct-conversion receivers. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 44(6), 428–435. https://doi.org/10.1109/82.592569
  • Sharroush, S. M., Abdalla, Y. S., Dessouki, A. A., & El-Badawy, E. S. A. (2009). Subthreshold MOSFET transistor amplifier operation. 4th International Design and Test Workshop, IDT 2009, November (ieeexplore.ieee.org). https://doi.org/10.1109/IDT.2009.5404144
  • Shiji, Z., & Wu, G. (2020). A folded-cascode mixer for mixing-spur suppressions in a 2.4-to-5.8 GHz transmitter. Integration, 70(October), 108–115. https://doi.org/10.1016/j.vlsi.2019.10.003
  • Terrovitis, M. T., & Meyer, R. G. (1999). Noise in current-commutating CMOS mixers. IEEE Journal of Solid-State Circuits, 34(6), 772–783. https://doi.org/10.1109/4.766811
  • Wan, Q., & Wang, C. (2011). A low-voltage low-power CMOS transmitter front-end using current mode approach for 2.4 GHz wireless communications. Microelectronics Journal, 42(5), 766–771. https://doi.org/10.1016/j.mejo.2011.01.009
  • Wan, Q., Wang, C., & Yu, F. (2012). Design of a 2.4 GHz high-performance up-conversion mixer with current mirror topology. Radioengineering, 21(2), 752–757 http://hdl.handle.net/11012/37119.
  • Wan, Q., Xu, D., Zhou, H., & Dong, J. (2018). A complementary current-mirror-based bulk-driven down-conversion mixer for wideband applications. Circuits, Systems, and Signal Processing, 37(9), 3671–3684. https://doi.org/10.1007/s00034-017-0739-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.