188
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Analysis of energy harvesting in SWIPT using bio-inspired algorithms

ORCID Icon & ORCID Icon
Pages 291-311 | Received 02 May 2021, Accepted 05 Dec 2021, Published online: 10 Feb 2022

References

  • Boshkovska, E., Ng, D. W. K., Zlatanov, N., & Schober, R. (2015). Practical non-linear energy harvesting model and resource allocation for swipt systems. IEEE Communications Letters, 19(12), 2082–2085. https://doi.org/10.1109/LCOMM.2015.2478460
  • Chen, Y. (2019). Energy harvesting communications: Principles and theories. John Wiley & Sons.
  • Chien, W., Chiu, -C.-C., Cheng, Y.-T., Fang, W.-L., & Lim, E. H. (2020). Multi-objective function for swipt system by sadde. Applied Sciences, 10(9), 3124. https://doi.org/10.3390/app10093124
  • Clerc, M., & Kennedy, J. (2002). The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation, 6(1), 58–73. https://doi.org/10.1109/4235.985692
  • He, M., Wang, Z., Leach, M., Jiang, Z., & Lim, E. G. (2018). Bio-inspired optimization algorithms applied to rectenna design. Big Data Analytics, 3(1), 1–21. https://doi.org/10.1186/s41044-017-0026-4
  • Huang, C., Zhou, S., Xu, J., Niu, Z., Zhang, R., & Cui, S. (2019). Energy harvesting wireless communications. Wiley Online Library.
  • Kang, J.-M., Kim, I.-M., & Kim, D. I. (2017). Wireless information and power transfer: Rate-energy tradeoff for nonlinear energy harvesting. IEEE Transactions on Wireless Communications, 17(3), 1966–1981. https://doi.org/10.1109/TWC.2017.2787569
  • Karaboga, D. (2005). An idea based on honey bee swarm for numerical optimization. (Tech.Rep.). Citeseer.
  • Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of icnn’95- international conference on neural networks 27 Nov.-1 Dec. 1995, Perth, WA, Australia (Vol. 4, pp.1942–1948). NY, USA: IEEE. https://ieeexplore.ieee.org/document/488968
  • Kim, S., Vyas, R., Bito, J., Niotaki, K., Collado, A., Georgiadis, A., & Tentzeris, M. M. (2014). Ambient rf energy-harvesting technologies for self-sustainable standalone wireless sensor platforms. Proceedings of the IEEE, 102(11), 1649–1666. https://doi.org/10.1109/JPROC.2014.2357031
  • Kirthiga, S., & Jayakumar, M. (2014). Performance of dual beam mimo for millimeter wave indoor communication systems. Wireless Personal Communications, 77(1), 289–307. https://doi.org/10.1007/s11277-013-1506-0
  • Kumar, D., Gandhi, B. R., & Bhattacharjya, R. K. (2020). Introduction to invasive weed optimization method. In Bennis, Fouad, and Bhattacharjya, Rajib Kumar Nature-inspired methods for metaheuristics optimization (pp. 203–214, 978-3-030-26457-4). Springer.
  • Kumar, P., & Jayakumar, M. (2010, July 5- 8). Comparison of bit error rate for propagation mechanisms of millimeter waves in a practical communication systems employing psk and fsk. In PIERS Proceedings. Cambridge, USA.
  • Li, Y. (2013). In-phase and quadrature imbalance: Modeling, estimation, and compensation. Springer Science & Business Media.
  • Li, L., Cai, R., Jiang, H., & Su, X. (2019). Rate-energy tradeoff for swipt systems with multi-user interference channels under non-linear energy harvesting model. In 2019 IEEE 89th vehicular technology conference (vtc2019-spring), IEEE, (pp. 1–6).
  • Liu, W., Zhou, X., Durrani, S., & Popovski, P. (2016). Swipt with practical modulation and rf energy harvesting sensitivity. In 2016 IEEE International Conference on Communications (ICC), IEEE, (pp. 1–7).
  • Lu, Y., Xiong, K., Fan, P., Ding, Z., Zhong, Z., & Letaief, K. B. (2018). Global energy efficiency in secure miso swipt systems with non-linear power-splitting eh model. IEEE Journal on Selected Areas in Communications, 37(1), 216–232. https://doi.org/10.1109/JSAC.2018.2872369
  • Mehrabian, A. R., & Lucas, C. (2006). A novel numerical optimization algorithm inspired from weed colonization. Ecological Informatics, 1(4), 355–366. https://doi.org/10.1016/j.ecoinf.2006.07.003
  • Mishra, S., Barisal, A., & Babu, B. C. (2019). Invasive weed optimization-based automatic generation control for multi-area power systems. International Journal of Modelling and Simulation, 39(3), 190–202. https://doi.org/10.1080/02286203.2018.1554403
  • Morsi, R., Jamali, V., Ng, D. W. K., & Schober, R. (2018). On the capacity of swipt systems with a nonlinear energy harvesting circuit. In 2018 IEEE International Conference on Communications (ICC), IEEE, (pp. 1–7).
  • Motahhir, S., Chouder, A., El Hammoumi, A., Benyoucef, A. S., El Ghzizal, A., Kichou, S., and Silvestre, S. (2020). Optimal energy harvesting from a multistrings pv generator based on artificial bee colony algorithm. IEEE Systems Journal, 15(3), 4137–4144. https://doi.org/10.1109/JSYST.2020.2997744
  • Nguyen, T.-H., Nguyen, L. V., Jung, J. J., Agbehadji, I. E., Frimpong, S. O., & Millham, R. C. (2020). Bio-inspired approaches for smart energy management: State of the art and challenges. Sustainability, 12(20), 8495. https://doi.org/10.3390/su12208495
  • Nguyen, H.-S., Nguyen, T.-S., & Voznak, M. (2018). Relay selection for swipt: Performance analysis of optimization problems and the trade-off between ergodic capacity and energy harvesting. AEU-International Journal of Electronics and Communications, 85(1), 59–67. https://doi.org/10.1016/j.aeue.2017.12.012
  • Peng, X., & Li, J. (2019). Harvested energy maximization of swipt system with popularity cache scheme in dense small cell networks. Wireless Communications and Mobile Computing, 2019(2019), 1–14. https://doi.org/10.1155/2019/1949638
  • Perera, T. D. P., Jayakody, D. N. K., Sharma, S. K., Chatzinotas, S., & Li, J. (2017). Simultaneous wireless information and power transfer (swipt): Recent advances and future challenges. IEEE Communications Surveys & Tutorials, 20(1), 264–302. https://doi.org/10.1109/COMST.2017.2783901
  • Ponnusamy, V., Jung, L. T., Ramachandran, T., & Zaman, N. (2017). Bio-inspired energy scavenging in wireless ad hoc network. In 2017 International Conference On Innovations in Electrical Engineering And Computational Technologies (ICIEECT), IEEE, (pp. 1–5).
  • Robinson, J., & Rahmat-Samii, Y. (2004). Particle swarm optimization in electromagnetics. IEEE Transactions on Antennas and Propagation, 52(2), 397–407. https://doi.org/10.1109/TAP.2004.823969
  • Schenk, T. (2008). Rf imperfections in high-rate wireless systems: Impact and digital compensation. Springer Science & Business Media.
  • Shi, L., Ye, Y., Hu, R. Q., & Zhang, H. (2019). Energy efficiency maximization for swipt enabled two-way df relaying. IEEE Signal Processing Letters, 26(5), 755–759. https://doi.org/10.1109/LSP.2019.2906463
  • Shim, Y., & Shin, W. (2019). Energy rate maximization with sum-rate constraint for swipt in multiple-access channels. Electronics, 8(12), 1525. https://doi.org/10.3390/electronics8121525
  • Sundaram, M., & Ramanathan, R. (2017). Performance optimization of rf energy harvesting wireless sensor networks. Procedia Computer Science, 115(1), 831–837. https://doi.org/10.1016/j.procs.2017.09.165
  • Tsou, H. (1998). The effect of phase and amplitude imbalance on the performance of offset quadrature phase-shift-keyed (oqpsk) communication systems. The Telecommunications and Mission Operations Progress Report 42-135, July–September 1998, 1–15.
  • Tuan, P. V., & Koo, I. (2017). Robust weighted sum harvested energy maximization for swipt cognitive radio networks based on particle swarm optimization. Sensors, 17(10), 2275. https://doi.org/10.3390/s17102275
  • Varshney, L. R. (2008). Transporting information and energy simultaneously. In 2008 IEEE International Symposium on Information Theory, IEEE, (pp. 1612–1616).
  • Vieeralingaam, G., & Ramanathan, R. (2018). Parametric study of rf energy harvesting in swipt enabled wireless networks under downlink scenario. Procedia Computer Science, 143(1), 835–842. https://doi.org/10.1016/j.procs.2018.10.380
  • Vieeralingaam, G., Ramanathan, R., & Jayakumar, M. (2020). Convex optimization approach to joint interference and distortion minimization in energy harvesting wireless sensor networks. Arabian Journal for Science and Engineering, 45(3), 1669–1684. https://doi.org/10.1007/s13369-019-04160-7
  • Xu, K., Zhang, M., Liu, J., Sha, N., Xie, W., & Chen, L. (2019). Swipt in mmimo system with non-linear energy-harvesting terminals: Protocol design and performance optimization. EURASIP Journal on Wireless Communications and Networking, 2019(1), 1–15. https://doi.org/10.1186/s13638-019-1378-4
  • Yang, X.-S. (2009). Firefly algorithms for multimodal optimization. In International Symposium on Stochastic Algorithms, Springer, Berlin, Heidelberg, (pp. 169–178).
  • Yang, X.-S. (2010). Nature-inspired metaheuristic algorithms. Luniver press.
  • Zekkari, C., Djendi, M., & Guessoum, A. (2019). Iq imbalance estimation and compensation in receiver system. In 2019 International Conference on Advanced Electrical Engineering (ICAEE), IEEE, (pp. 1–5).
  • Zhang, M., Chen, Z., & Wei, L. (2019). An immune firefly algorithm for tracking the maximum power point of pv array under partial shading conditions. Energies, 12(16), 3083. https://doi.org/10.3390/en12163083
  • Zhang, R., Maunder, R. G., & Hanzo, L. (2015). Wireless information and power transfer: From scientific hypothesis to engineering practice. IEEE Communications Magazine, 53(8), 99–105. https://doi.org/10.1109/MCOM.2015.7180515
  • Zhou, X., Zhang, R., & Ho, C. K. (2013). Wireless information and power transfer: Architecture design and rate-energy tradeoff. IEEE Transactions on Communications, 61(11), 4754–4767. https://doi.org/10.1109/TCOMM.2013.13.120855

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.