125
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Modulation signal identification and classification based on the OA algorithm model

ORCID Icon, &
Pages 1012-1032 | Received 08 Apr 2022, Accepted 09 Apr 2023, Published online: 11 May 2023

References

  • Chen, Z., Wu, L., & Chen, P. (2016). Efficient modulation and demodulation methods for multi-carrier communication. IET Communications, 10(5), 567–576. https://doi.org/10.1049/iet-com.2015.0877
  • Daimei, Z. (2017). Blind modulation identification of quadrature amplitude modulation and phase-shift keying signals in dual-polarized channels [ Doctoral dissertation]. The University of Utah Graduate School. J. Willard Marriott digital Library the University of Utah. https://collections.lib.utah.edu/ark:/87278/s6md34nj
  • Daimei, Z., & Mathews, V. J. (2016). Blind phase-shift keying and quadrature amplitude ratio modulation identification (U.S. Patent No. 9,413,584). U.S. Patent and Trademark Office. http://patft.uspto.gov/netacgi/nph-Parser?patentnumber=9,413,584
  • Dobre, O. A., Abdi, A., Barness, Y., & Su, W. (2007). Survey of automatic modulation classification techniques: Classical approaches and new trends. IET Communications, 1(2), 137–156. https://doi.org/10.1049/iet-com:20050176
  • Fu, G., Lin, J. H., & He, Q. (2014). Demodulating method of frequency predictable digital FM signal. Applied Mechanics and Materials, 644-650, 4595–4598. https://doi.org/10.4028/www.scientific.net/AMM.644-650.4595
  • Gabrielaitis, M. (2021). Fast and accurate amplitude demodulation of wideband signals. IEEE Transactions on Signal Processing, 69, 4039–4054. https://doi.org/10.1109/TSP.2021.3087899
  • Govindaiah, P. K. (2012). Design and development of gaussian minimum shift keying (GMSK) demodulator for satellite communication. Bonfring International Journal of Research in Communication Engineering, 2(2), 06–11. https://doi.org/10.9756/BIJRCE.1287
  • Jacques, P. M., Melvin, F., & Albertus, S. J. H. (2020). A comparison of clustering algorithms for automatic modulation classification. Expert Systems with Applications, 151, 1–10. https://doi.org/10.1016/j.eswa.2020.113317
  • Jafar, N., Paeiz, A., & Farzaneh, A. (2021). Automatic modulation classification using modulation fingerprint extraction. Journal of Systems Engineering and Electronics, 32(4), 799–810. https://doi.org/10.23919/JSEE.2021.000069
  • Jinyin, C., Hui, C., Shenghuan, M., Changan, W., Haibin, Z., Shilian, Z., Liang, H., & Qi, X. (2021). FEM: Feature extraction and mapping for radio modulation classification. Physical Communication, 45, 1–8. https://doi.org/10.1016/j.phycom.2021.101279
  • Juan, P. H., Chen, K. H., & Wang, F. K. (2021). Frequency-offset self-injection-locked radar with digital frequency demodulation for SNR improvement, elimination of EMI issue, and DC offset calibration. IEEE Transactions on Microwave Theory and Techniques, 69(1), 1149–1160. https://doi.org/10.1109/TMTT.2020.3039780
  • Linz, A., & Hendrickson, A. (1996). Efficient implementation of an I-Q GMSK modulator. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 43(1), 14–23. https://doi.org/10.1109/82.481470
  • Liu, X., Sun, C., Zhou, M., Wu, C., Peng, B., & Li, P. (2021). Reinforcement learning-based multislot double-threshold spectrum sensing with bayesian fusion for industrial big spectrum data. IEEE Transactions on Industrial Informatics, 17(5), 3391–3400. https://doi.org/10.1109/TII.2020.2987421
  • Liu, X., Sun, Q., Lu, W., Wu, C., & Ding, H. (2020). Big-data-based intelligent spectrum sensing for heterogeneous spectrum communications in 5G. IEEE Wireless Communications, 27(5), 67–73. https://doi.org/10.1109/MWC.001.1900493
  • Machado, R. G., & Wyglinski, A. M. (2015). Software-defined radio: Bridging the analog–digital divide. Proceedings of the IEEE, 103(3), 409–423. https://doi.org/10.1109/JPROC.2015.2399173
  • Peng, S., Jiang, H., Wang, H., Alwageed, H., Zhou, Y., Sebdani, M. M., & Yao, Y. D. (2019). Modulation classification based on signal constellation diagrams and deep learning. IEEE Transactions on Neural Networks and Learning Systems, 30(3), 718–727. https://doi.org/10.1109/TNNLS.2018.2850703
  • Sandell, M., Tosato, F., & Ismail, A. (2016). Efficient demodulation of general APSK constellations. IEEE Signal Processing Letters, 23(6), 868–872. https://doi.org/10.1109/LSP.2016.2560241
  • Singya, P. K., Shaik, P., Kumar, N., Bhatia, V., & Alouini, M. (2021). A survey on higher-order QAM constellations: Technical challenges, recent advances, and future trends. IEEE Open Journal of the Communications Society, 2, 617–655. https://doi.org/10.1109/OJCOMS.2021.3067384
  • Venkitaraman, A., & Seelamantula, C. S. (2014). Binaural signal processing motivated generalized analytic signal construction and AM-FM demodulation. IEEE Transactions on Audio, Speech, and Language Processing, 22(6), 1023–1036. https://doi.org/10.1109/TASLP.2014.2316376
  • Wang, Y., Gui, G., Ohtsuki, T., & Adachi, F. (2021). Multi-task learning for generalized automatic modulation classification under non-gaussian noise with varying SNR condit-ions. IEEE Transactions on Wireless Communications, 20(6), 3587–3596. https://doi.org/10.1109/TWC.2021.3052222
  • Wong, D. M. L., & Asoke, K. N. (2008). Semi-blind algorithms for automatic classification of digital modulation schemes. Digital Signal Processing, 18(2), 209–227. https://doi.org/10.1016/j.dsp.2007.02.007
  • Zhang, R., Yin, Z., Wu, Z., & Zhou, S. (2021). A novel automatic modulation classification method using attention mechanism and hybrid parallel neural network. Applied Sciences, 11(3), 1–19. https://doi.org/10.3390/app11031327
  • Zhijing, Y., Lihua, Y., Chunmei, Q., & Daren, H. (2008). A method to eliminate riding waves appearing in the empirical AM/FM demodulation. Digital Signal Processing, 18(4), 488–504. https://doi.org/10.1016/j.dsp.2007.07.003
  • Zhou, F., Geng, X. X., & Zhang, X. Y. (2014). An improved QPSK signal’s algorithm design and simulation of its modulation and demodulation. Advanced Materials Research, 912-914, 1146–1149. https://doi.org/10.4028/www.scientific.net/amr.912-914.1146
  • Ziemer, R. E., & Welch, T. B. (2000). Equal-gain combining of multichannel DPSK in Doppler-spread ricean fading. IEEE Transactions on Vehicular Technology, 49(5), 1846–1855. https://doi.org/10.1109/25.892588

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.