67
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

A novel design procedure of a compact-size X-band shunt feedback amplifier

&
Pages 1077-1093 | Received 12 Aug 2022, Accepted 09 Apr 2023, Published online: 08 May 2023

References

  • Alizadeh, A., Frounchi, M., & Medi, A. (2016). On design of wideband compact-size Ka/Q-band high-power amplifiers. IEEE Transactions on Microwave Theory and Techniques, 64(6), 1831–1842. https://doi.org/10.1109/TMTT.2016.2554578
  • Alizadeh, A., & Medi, A. (2016). A broadband integrated class-J power amplifier in GaAs pHEMT technology. IEEE Transactions on Microwave Theory and Techniques, 64(6), 1822–1830. https://doi.org/10.1109/TMTT.2016.2552167
  • Andrei, C., Doerner, R., Bengtsson, O., Chevtchenko, S. A., Heinrich, W., & Rudolph, M. (2012). Highly linear X-band GaN-based low-noise amplifier. 2012 International Symposium on Signals, Systems, and Electronics (ISSSE), Potsdam, Germany.
  • Babakrpur, E., Medi, A., & Namgoong, W. (2017). Wideband GaAs MMIC driver power amplifiers for X and Ku bands. 2017 Texas Symposium on Wireless and Microwave Circuits and Systems (WMCS), Waco, TX, USA.
  • Bahl, I. (2009). Fundamentals of RF and microwave transistor amplifiers. John Wiley & Sons.
  • Bevilacqua, A., & Niknejad, A. M. (2004). An ultrawideband CMOS low-noise amplifier for 3.1-10.6-GHz wireless receivers. IEEE Journal of Solid-State Circuits, 39(12), 2259–2268. https://doi.org/10.1109/JSSC.2004.836338
  • Çalişkan, C., Kalyoncu, İ., Ozeren, E., Kaynak, M., & Gurbuz, Y. (2016). A wideband low noise SiGe medium power amplifier for X-Band phased array applications. 2016 11th European Microwave Integrated Circuits Conference (EuMIC), London, UK.
  • Chen, H. K., Chang, D. C., Juang, Y. Z., & Lu, S. S. (2007). A compact wideband CMOS low-noise amplifier using shunt resistive-feedback and series inductive-peaking techniques. IEEE Microwave and Wireless Components Letters, 17(8), 616–618. https://doi.org/10.1109/LMWC.2007.901797
  • Chen, Y. J. E., Yang, L. Y., & Yeh, W. C. (2007). An integrated wideband power amplifier for cognitive radio. IEEE Transactions on Microwave Theory and Techniques, 55(10), 2053–2058. https://doi.org/10.1109/TMTT.2007.906497
  • Deal, W. R., Biedenbender, M., Liu, P. H., Uyeda, J., Siddiqui, M., & Lai, R. (2007). Design and analysis of broadband dual-gate balanced low-noise amplifiers. IEEE Journal of Solid-State Circuits, 42(10), 2107–2115. https://doi.org/10.1109/JSSC.2007.904316
  • de Hek, P., Van Caekenberghe, K., & van Dijk, R. (2010). A 3–14 GHz pseudo-differential distributed low noise amplifier. The 5th European Microwave Integrated Circuits Conference, Paris, France.
  • De Hek, A., Van Der Bent, G., Van Wanum, M., & Van Vliet, F. (2005). A cost-effective 10 Watt X-band high power amplifier and 1 Watt driver amplifier chip-set. European Gallium Arsenide and Other Semiconductor Application Symposium, GAAS 2005, Paris, France.
  • Fu, C. T., & Kuo, C. N. (2006). 3/Spl sim/11-GHz CMOS UWB LNA using dual feedback for broadband matching. IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 2006, San Francisco, CA, USA.
  • Gonzalez, G. (1997). Analysis and design. MICROWAVE TRANSISTOR AMPLIFIERS.
  • Hu, J., & Ma, K. (2019). A 1–40-GHz LNA MMIC using multiple bandwidth extension techniques. IEEE Microwave and Wireless Components Letters, 29(5), 336–338. https://doi.org/10.1109/LMWC.2019.2908883
  • Hu, J., Ma, K., Mou, S., & Meng, F. (2019). Analysis and design of a 0.1–23 GHz LNA MMIC using frequency-dependent feedback. IEEE Transactions on Circuits and Systems II: Express Briefs, 66(9), 1517–1521. https://doi.org/10.1109/TCSII.2019.2891262
  • Kim, H., Kim, K. Y., Kim, W., Noh, Y., Yom, I., Oh, I., & Park, C. S. (2009). SiGe MMIC power amplifier with on-chip lineariser for X-band applications. Electronics Letters, 45(20), 1036–1037. https://doi.org/10.1049/el.2009.1973
  • Ko, B. K., & Lee, K. (1996). A comparative study on the various monolithic low noise amplifier circuit topologies for RF and microwave applications. IEEE Journal of Solid-State Circuits, 31(8), 1220–1225. https://doi.org/10.1109/4.508274
  • Ko, B. K., & Lee, K. (1997). A new simultaneous noise and input power matching technique for monolithic LNA’s using cascode feedback. IEEE Transactions on Microwave Theory and Techniques, 45(9), 1627–1629. https://doi.org/10.1109/22.622931
  • Lee, H., Lee, W., Kim, T., Helaoui, M., Ghannouchi, F. M., & Yang, Y. (2019). 6–18 GHz GaAs pHEMT broadband power amplifier based on dual-frequency selective impedance matching technique. Institute of Electrical and Electronics EngineersAccess, 7, 66275–66280. https://doi.org/10.1109/ACCESS.2019.2917699
  • Meghdadi, M., & Medi, A. (2017). Design of 6–18-GHz high-power amplifier in GaAs pHEMT technology. IEEE Transactions on Microwave Theory and Techniques, 65(7), 2353–2360. https://doi.org/10.1109/TMTT.2017.2680431
  • Milićević, M. M., Milinković, B. S., Grujić, D. N., & Saranovac, L. V. (2018). Power and conjugately matched high band UWB power amplifier. IEEE Transactions on Circuits and Systems I: Regular Papers, 65(10), 3138–3149. https://doi.org/10.1109/TCSI.2018.2815612
  • Negra, R., Vogt, R., & Bachtold, W. (2003). High power-density monolithic linear X-band power amplifier using a low-cost MESFET technology. Proceedings of the 2003 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference-IMOC 2003.(Cat. No. 03TH8678), Foz do Iguacu, Brazil.
  • Nikandish, G., & Medi, A. (2013). A design procedure for high-efficiency and compact-size 5–10-W MMIC power amplifiers in GaAs pHEMT technology. IEEE Transactions on Microwave Theory and Techniques, 61(8), 2922–2933. https://doi.org/10.1109/TMTT.2013.2271997
  • Nikandish, G., & Medi, A. (2014). Unilateralization of MMIC distributed amplifiers. IEEE Transactions on Microwave Theory and Techniques, 62(12), 3041–3052. https://doi.org/10.1109/TMTT.2014.2361341
  • Nikandish, G., Yousefi, A., & Kalantari, M. (2016). A broadband multistage LNA with bandwidth and linearity enhancement. IEEE Microwave and Wireless Components Letters, 26(10), 834–836. https://doi.org/10.1109/LMWC.2016.2605446
  • Nikandish, G., Yousefi, A., & Medi, A. (2014). Stability analysis of broadband cascode amplifiers in the presence of inductive parasitic components. IET Circuits, Devices & Systems, 8(6), 469–477. https://doi.org/10.1049/iet-cds.2013.0470
  • Pajic, S., Wang, N., Watson, P. M., Quach, T. K., & Popovic, Z. (2005). X-band two-stage high-efficiency switched-mode power amplifiers. IEEE Transactions on Microwave Theory and Techniques, 53(9), 2899–2907. https://doi.org/10.1109/TMTT.2005.854239
  • Powell, J., Uren, M. J., Martin, T., McLachlan, A., Tasker, P., Woodington, S., Bell, J., Saini, R., Benedikt, J., & Cripps, S. C. (2011). GaAs X-band high efficiency (> 65%) Broadband (> 30%) amplifier MMIC based on the class B to class J continuum. 2011 IEEE MTT-S International Microwave Symposium, Baltimore, MD, USA.
  • Razavi, B., & Behzad, R. 2012. RF microelectronics (Vol. 2). Prentice hall New York.
  • Tayrani, R. (2001). A monolithic X-band class-E power amplifier. GaAs IC Symposium. IEEE Gallium Arsenide Integrated Circuit Symposium. 23rd Annual Technical Digest 2001 (Cat. No. 01CH37191), Baltimore, MD, USA.
  • Tayrani, R. (2007). A highly efficient broadband (7-14 GHz) monolithic class e power amplifier for space based radar. (2007 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, Honolulu, HI, USA.
  • Yousefi, A., & Medi, A. (2014). Wide‐band high‐efficiency Ku‐band power amplifier. IET Circuits, Devices & Systems, 8(6), 583–592. https://doi.org/10.1049/iet-cds.2014.0134

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.