66
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Miller compensated three-stage OTA for a wide range of load capacitors (1 pF to 1 nF)

Received 14 Jul 2022, Accepted 05 May 2023, Published online: 20 Jul 2023

References

  • Akbari, M., & Nazari, M. (2016). A two-stage rail-to-rail current mirror ota for ultra-low-power applications. International Journal of Electronics Letters, 4(4), 427–432. https://doi.org/10.1080/21681724.2015.1067842
  • Alizadeh Arand, F., & Yavari, M. (2021). A three-stage nmc operational amplifier with enhanced slew rate for switched-capacitor circuits. Analog Integrated Circuits and Signal Processing, 106(3), 697–706. https://doi.org/10.1007/s10470-020-01795-7
  • Anisheh, S. M., & Shamsi, H. (2017). Two-stage class-ab ota with enhanced dc gain and slew rate. International Journal of Electronics Letters, 5(4), 438–448. https://doi.org/10.1080/21681724.2016.1253780
  • Asiyabi, T., Soltani Zanjani, M., Goodarzi, M., & Biabanifard, S. (2019). Four stage ota CMOS frequency compensation based on double differential feedback paths. Analog Integrated Circuits and Signal Processing, 101(1), 155–168. https://doi.org/10.1007/s10470-019-01515-w
  • Babazadeh Daryan, B., Khalesi, H., Ghods, V., & Izadbakhsh, A. (2020). Multi-stage CMOS amplifier frequency compensation using a single moscap. Analog Integrated Circuits and Signal Processing, 103(2), 237–246. https://doi.org/10.1007/s10470-020-01595-z
  • Biabanifard, S., Largani, S. M., Biamanifard, A., Biabanifard, M., Hemmati, M., & Khan- Mohammadi, Z. (2018). Three stages CMOS operational amplifier frequency compensation using single miller capacitor and differential feedback path. Analog Integrated Circuits and Signal Processing, 97(2), 195–205. https://doi.org/10.1007/s10470-018-1117-5
  • Biabanifard, S., Mehdi Largani, S., Akbari, M., Asadi, S., & Yagoub, M. C. (2015). High performance reversed nested miller frequency compensation. Analog Integrated Circuits and Signal Processing, 85(1), 223–233. https://doi.org/10.1007/s10470-015-0616-x
  • Cannizzaro, S. O., Grasso, A. D., Palumbo, G., & Pennisi, S. (2008). Single miller capacitor frequency compensation with nulling resistor for three-stage amplifiers. International Journal of Circuit Theory and Applications, 36(7), 825–837. https://doi.org/10.1002/cta.464
  • Chaharmahali, I., Asadi, S., & Dousti, M. (2016). Design procedure for three-stage CMOS OTAs with ac boosting frequency compensation technique. IETE Journal of Research, 62(5), 705–713. https://doi.org/10.1080/03772063.2016.1181992
  • Fordjour, S. A., Riad, J., & Sánchez-Sinencio, E. (2020). A 175.2-mw 4-stage ota with wide load range (400 pf–12 nf) using active parallel compensation. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 28(7), 1621–1629. https://doi.org/10.1109/TVLSI.2020.2993059
  • Ghorbanzadeh, S., Dehbovid, H., Ghorbani, A., & Abedi Pahnekola, M. (2022). Two-stage class-ab ota with improved specifications. Analog Integrated Circuits and Signal Processing, 111(2), 159–168. https://doi.org/10.1007/s10470-022-01986-4
  • Giustolisi, G., & Palumbo, G. (2021). Efficient design strategy for optimizing the settling time in three-stage amplifiers including small-and large-signal behavior. Electronics, 10(5), 612. https://doi.org/10.3390/electronics10050612
  • Golabi, S., & Yavari, M. (2015). A three-stage class ab operational amplifier with enhanced slew rate for switched-capacitor circuits. Analog Integrated Circuits and Signal Processing, 83(1), 111–118. https://doi.org/10.1007/s10470-015-0513-3
  • Grasso, A. D., Marano, D., Palumbo, G., & Pennisi, S. (2017). High-performance three-stage single-miller CMOS ota with no upper limit of. IEEE Transactions on Circuits & Systems II: Express Briefs, 65(11), 1529–1533. https://doi.org/10.1109/TCSII.2017.2756923
  • Grasso, A. D., Palumbo, G., & Pennisi, S. (2006). Active reversed nested miller compensation for three-stage amplifiers. In 2006 ieee international symposium on circuits and systems, Kos, Greece (pp. 4–pp).
  • Grasso, A. D., Palumbo, G., & Pennisi, S. (2015). High-performance four-stage CMOS ota suitable for large capacitive loads. IEEE Transactions on Circuits & Systems I: Regular Papers, 62(10), 2476–2484. https://doi.org/10.1109/TCSI.2015.2476298
  • Grasso, A. D., Palumbo, G., Pennisi, S., & Marano, D. (2018). Three-stage single-miller CMOS ota driving 10 nf with 1.46-mhz gbw. In 2018 international conference on ic design & technology (icicdt), Otranto, Italy (pp. 37–40).
  • Kaliyath, Y., & Laxminidhi, T. (2019). A 1.8 v 8.62 µw inverter-based gain-boosted ota with 109.3 db dc gain for SC circuits. IETE Journal of Research, 65(6), 749–757. https://doi.org/10.1080/03772063.2018.1464968
  • Li, Z., Ma, R., Liu, M., Ding, R., & Zhu, Z. (2019). A high gain, 808 mhz gbw four-stage ota in 65 nm cmos. Journal of Circuits, Systems and Computers, 28(11), 1950192. https://doi.org/10.1142/S0218126619501925
  • Loera, A. R., Veerabathini, A., Oropeza, L. A. F., Martínez, L. A. C., & Frias, D. M. (2021). Improved frequency compensation technique for three-stage amplifiers. Journal of Low Power Electronics and Applications, 11(1), 11. https://doi.org/10.3390/jlpea11010011
  • Marano, D., Grasso, A. D., Palumbo, G., & Pennisi, S. (2016). Optimized active single-miller capacitor compensation with inner half-feedforward stage for very high-load three-stage otas. IEEE Transactions on Circuits & Systems I: Regular Papers, 63(9), 1349–1359. https://doi.org/10.1109/TCSI.2016.2573920
  • Riad, J., Estrada-López, J. J., Padilla-Cantoya, I., & Sánchez-Sinencio, E. (2020). Power- scaling output-compensated three-stage OTAs for wide load range applications. IEEE Transactions on Circuits & Systems I: Regular Papers, 67(7), 2180–2192. https://doi.org/10.1109/TCSI.2020.2978515
  • Soltani Zanjani, M., Khatib, F., & Seyyed Mahdavi Chabok, S. J. (2020). Multistage operational transconductance amplifier frequency compensation technique based on fully differential feedback stage. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 33(2), e2702. https://doi.org/10.1002/jnm.2702
  • Yan, Z., Mak, P.-I., Law, M.-K., & Martins, R. P. (2013). A 0.016-mm 2 144 µw three-stage amplifier capable of driving 1-to-15 nf capacitive load with >0.95-mhz gbw. IEEE Journal of Solid-State Circuits, 48(2), 527–540. https://doi.org/10.1109/JSSC.2012.2229070
  • Yan, Z., Mak, P.-I., Law, M.-K., & Martins, R. P. (2015). 0.0045 mm2 15.8 µw three- stage amplifier driving 10×-wide (0.15–1.5 nf) capacitive loads with¿ 50° phase margin. Electronics Letters, 51(6), 454–456. https://doi.org/10.1049/el.2014.4391
  • Zaherfekr, M., & Biabanifard, A. (2019). Improved reversed nested miller frequency compensation technique based on current comparator for three-stage amplifiers. Analog Integrated Circuits and Signal Processing, 98(3), 633–642. https://doi.org/10.1007/s10470-019-01405-1
  • Zia, E., Jalali, A., & Akbari, M. (2017). Indirect frequency compensation technique using flipped voltage follower cell. International Journal of Electronics Letters, 5(2), 189–198. https://doi.org/10.1080/21681724.2016.1138510

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.