166
Views
2
CrossRef citations to date
0
Altmetric
Research Article

A low-power SRAM design with enhanced stability and ION/IOFF ratio in FinFET technology for wearable device applications

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Received 30 Nov 2022, Accepted 12 Jun 2023, Published online: 25 Jul 2023

References

  • Abbasian, E. (2022). A highly stable low-energy 10T SRAM for near-threshold operation. IEEE Transactions on Circuits and Systems I: Regular Papers, 69(12), 5195–5205. https://doi.org/10.1109/TCSI.2022.3207992
  • Abbasian, E., Birla, S., Asadi, A., & Sofimowloodi, S. (2022). FinFET-based 11T sub-threshold SRAM with improved stability and power. International Journal of Electronics, 1–19. https://doi.org/10.1080/00207217.2022.2121987
  • Abbasian, E. & Sofimowloodi, S. (2023a). Energy-efficient single-ended read/write 10T near-threshold SRAM, 70(5), 2037–2047. https://doi.org/10.1109/TCSI.2023.3247807
  • Abbasian, E., & Sofimowloodi, S. (2023b). A robust multi-bit soft-error immune SRAM cell for low-power applications. Analog Integrated Circuits and Signal Processing, 115(1), 49–66. https://doi.org/10.1007/s10470-023-02144-0
  • Dolatshah, A., Abbasian, E., Nayeri, M., & Sofimowloodi, S. (2022). A sub-threshold 10T FinFET SRAM cell design for low-power applications. AEU-International Journal of Electronics and Communications, 157, 154417. https://doi.org/10.1016/j.aeue.2022.154417
  • Ensan, S. S., Moaiyeri, M. H., & Hessabi, S. (2018). A robust and low-power near-threshold SRAM in 10-nm FinFET technology. Analog Integrated Circuits and Signal Processing, 94(3), 497–506. https://doi.org/10.1007/s10470-018-1107-7
  • Ensan, S. S., Moaiyeri, M. H., Moghaddam, M., & Hessabi, S. (2019). A low-power single-ended SRAM in FinFET technology. AEU-International Journal of Electronics and Communications, 99, 361–368. https://doi.org/10.1016/j.aeue.2018.12.015
  • Eslami, N., Ebrahimi, B., Shakouri, E., & Najafi, D. (2020). A single-ended low leakage and low voltage 10T SRAM cell with high yield. Analog Integrated Circuits and Signal Processing, 105(2), 263–274. https://doi.org/10.1007/s10470-020-01669-y
  • Gul, W., Shams, M., & Al-Khalili, D. (2022). SRAM cell design challenges in modern deep sub-micron technologies: An overview. Micromachines, 13(8), 1332. https://doi.org/10.3390/mi13081332
  • Gupta, S., Gupta, K., Calhoun, B. H., & Pandey, N. (2018). Low-power near-threshold 10T SRAM bit cells with enhanced data-independent read port leakage for array augmentation in 32-nm CMOS. IEEE Transactions on Circuits & Systems I: Regular Papers, 66(3), 978–988. https://doi.org/10.1109/TCSI.2018.2876785
  • He, Y., Zhang, J., Wu, X., Si, X., Zhen, S., & Zhang, B. (2019). A half-select disturb-free 11T SRAM cell with built-in write/read-assist scheme for ultralow-voltage operations. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 27(10), 2344–2353. https://doi.org/10.1109/TVLSI.2019.2919104
  • Jan, M. R., Anantha, C., & Borivoje, N. (2003). Digital integrated circuits: A design perspective. Prentice Hall Upper Saddle.
  • Jiao, H., Qiu, Y., & Kursun, V. (2016). Low power and robust memory circuits with asymmetrical ground gating. Microelectronics Journal, 48, 109–119. https://doi.org/10.1016/j.mejo.2015.11.009
  • Karamimanesh, M., Abiri, E., Hassanli, K., Salehi, M. R., & Darabi, A. (2021). A robust and write bit-line free sub-threshold 12T-SRAM for ultra low power applications in 14 nm FinFET technology. Microelectronics Journal, 118, 105185. https://doi.org/10.1016/j.mejo.2021.105185
  • Kulkarni, J. P., & Roy, K. (2011). Ultralow-voltage process-variation-tolerant Schmitt-trigger-based SRAM design. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 20(2), 319–332. https://doi.org/10.1109/TVLSI.2010.2100834
  • Kushwah, C., Vishvakarma, S. K., & Dwivedi, D. (2016). A 20 nm robust single-ended boost-less 7T FinFET sub-threshold SRAM cell under process–voltage–temperature variations. Microelectronics Journal, 51, 75–88. https://doi.org/10.1016/j.mejo.2016.02.010
  • Leavline, E. J., & Sujitha, S. (2022). Design of FinFET based low power, high speed hybrid decoder for SRAM. Microelectronics Journal, 126, 105499. https://doi.org/10.1016/j.mejo.2022.105499
  • Lv, J., Wang, Z., Huang, M., & He, Y. (2022). A read-disturb-free and write-ability enhanced 9T SRAM with data-aware write operation. International Journal of Electronics, 109(1), 23–37. https://doi.org/10.1080/00207217.2021.1908614
  • Mahmoodi, E., & Gholipour, M. (2020). Design space exploration of low-power flip-flops in FinFET technology. Integration, 75, 52–62. https://doi.org/10.1016/j.vlsi.2020.06.006
  • Mani, E., Abbasian, E., Gunasegeran, M., & Sofimowloodi, S. (2022). Design of high stability, low power and high speed 12 T SRAM cell in 32-nm CNTFET technology. AEU-International Journal of Electronics and Communications, 154, 154308. https://doi.org/10.1016/j.aeue.2022.154308
  • Mohagheghi, J., Ebrahimi, B., & Torkzadeh, P. (2022). Single-ended 8T SRAM cell with high SNM and low power/energy consumption. International Journal of Electronics, 1–23. https://doi.org/10.1080/00207217.2022.2118848
  • Narayana, Y., & VVKDV, P. (2022). Ultra low power offering 14 nm bulk double gate FinFET based SRAM cells. Sustainable Computing: Informatics and Systems, 35, 100685. https://doi.org/10.1016/j.suscom.2022.100685
  • Oh, T. W., Jeong, H., Kang, K., Park, J., Yang, Y., & Jung, S.-O. (2016). Power-gated 9T SRAM cell for low-energy operation. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 25(3), 1183–1187. https://doi.org/10.1109/TVLSI.2016.2623601
  • Pasandi, G., & Fakhraie, S. M. (2014a). A 256-kb 9T near-threshold SRAM with 1k cells per bitline and enhanced write and read operations. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 23(11), 2438–2446. https://doi.org/10.1109/TVLSI.2014.2377518
  • Pasandi, G., & Fakhraie, S. M. (2014b). An 8T low-voltage and low-leakage half-selection disturb-free SRAM using bulk-CMOS and FinFETs. IEEE Transactions on Electron Devices, 61(7), 2357–2363. https://doi.org/10.1109/TED.2014.2321295
  • Pasandi, G., & Pedram, M. (2018). Internal write‐back and read‐before‐write schemes to eliminate the disturbance to the half‐selected cells in SRAMs. IET Circuits, Devices & Systems, 12(4), 460–466. https://doi.org/10.1049/iet-cds.2017.0227
  • Predictive Technology Model (PTM). (n.d.). http://ptm.asu.edu/.
  • Rawat, B., & Mittal, P. (2023). A low power single bit-line configuration dependent 7T SRAM bit cell with process-variation-tolerant enhanced read performance. Analog Integrated Circuits and Signal Processing, 115(1), 77–92. https://doi.org/10.1007/s10470-023-02147-x
  • Ruhil, S., Khanna, V., Dutta, U., & Shukla, N. K. (2023). A 7T high stable and low power SRAM cell design using QG-SNS FinFET. AEU-International Journal of Electronics and Communications, 168, 154704. https://doi.org/10.1016/j.aeue.2023.154704
  • Sachdeva, A., Kumar, D., & Abbasian, E. (2023). A carbon nano-tube field effect transistor based stable, low-power 8T static random access memory cell with improved write access time. AEU-International Journal of Electronics and Communications, 162, 154565. https://doi.org/10.1016/j.aeue.2023.154565
  • Sachdeva, A., & Tomar, V. (2021). Design of multi-cell upset immune single-end SRAM for low power applications. AEU-International Journal of Electronics and Communications, 128, 153516. https://doi.org/10.1016/j.aeue.2020.153516
  • Salahuddin, S., Jiao, H., & Kursun, V. (2013). A novel 6T SRAM cell with asymmetrically gate underlap engineered FinFETs for enhanced read data stability and write ability. International symposium on quality electronic design (ISQED) (pp. 353–358). IEEE. https://doi.org/10.1109/ISQED.2013.6523634
  • Santosh Kumar, T., & Tripathi, S. L. (2023). Low power and suppressed noise 6T, 7T SRAM cell using 18 nm FinFET. Wireless Personal Communications, 130(1), 103–112. https://doi.org/10.1007/s11277-023-10277-8
  • Sanvale, P., Gupta, N., Neema, V., Shah, A. P., & Vishvakarma, S. K. (2019). An improved read-assist energy efficient single ended PPN based 10T SRAM cell for wireless sensor network. Microelectronics Journal, 92, 104611. https://doi.org/10.1016/j.mejo.2019.104611
  • Shakouri, E., Ebrahimi, B., Eslami, N., & Chahardori, M. (2021). Single-ended 10T SRAM cell with high yield and low standby power. Circuits, Systems, and Signal Processing, 40(7), 3479–3499. https://doi.org/10.1007/s00034-020-01636-y
  • Sharma, D., & Birla, S. (2021). 10T FinFET based SRAM cell with improved stability for low power applications. International Journal of Electronics, 109(12), 1–16. https://doi.org/10.1080/00207217.2021.2001868
  • Sharma, P., Gupta, S., Gupta, K., & Pandey, N. (2020). A low power subthreshold Schmitt trigger based 12T SRAM bit cell with process-variation-tolerant write-ability. Microelectronics Journal, 97, 104703. https://doi.org/10.1016/j.mejo.2020.104703
  • Soni, L., & Pandey, N. (2023). A novel CNTFET based Schmitt-trigger read decoupled 12T SRAM cell with high speed, low power, and high Ion/Ioff ratio. AEU-International Journal of Electronics and Communications, 167, 154669. https://doi.org/10.1016/j.aeue.2023.154669
  • Thirugnanam, S., Soong, L. W., Prabhu, C. M., & Singh, A. K. (2023). Energy-efficient and variability-resilient 11T SRAM design using data-aware read–write assist (DARWA) technique for low-power applications. Sensors, 23(11), 5095. https://doi.org/10.3390/s23115095
  • Yousefi, A., Eslami, N., & Moaiyeri, M. H. (2022). A reliable and energy-efficient nonvolatile ternary memory based on hybrid FinFET/RRAM technology. IEEE Access, 10, 105040–105051. https://doi.org/10.1109/ACCESS.2022.3211562

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.