66
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Novel Low Profile Beam Switchable 5G Sub-6 GHz E-GSM Antenna for Vehicular Communication

ORCID Icon, ORCID Icon, &
Received 26 Oct 2022, Accepted 14 Jun 2023, Published online: 29 Jul 2023

References

  • Akhoondzadeh-Asl, L., Laurin, J. J., & Mirkamali, A. (2014, March). A novel low-profile monopole antenna with beam switching capabilities. IEEE Transactions on Antennas and Propagation, 62(3), 1212–1220. https://doi.org/10.1109/TAP.2013.2295215
  • Ali, M., Yang, G., Hwang, H. S., & Sittironnarit, T. (2004, January). Design and analysis of an R-shaped dual-band planar inverted-F antenna for vehicular applications. IEEE Transactions on Vehicular Technology, 53(1), 29–37. https://doi.org/10.1109/TVT.2003.822032
  • Ameelia Roseline, A., & Malathi, K. (2012). Compact dual-band patch antenna using spiral shaped electromagnetic bandgap structures for high speed wireless networks. AEU – International Journal of Electronics and Communications, 66(12), 963–968. https://doi.org/10.1016/j.aeue.2012.04.005. ISSN 1434-8411.
  • Andrews, J. G., Buzzi, S., Choi, W., Hanly, S. V., Lozano, A., Soong, A. C. K., & Zhang, J. C. (2014, June). What will 5G be? IEEE Journal on Selected Areas in Communications, 32(6), 1065–1082. https://doi.org/10.1109/JSAC.2014.2328098
  • Bao, Z., & Guo, Y.-X. (2021, June). Novel miniaturized antenna with a highly tunable complex input impedance for capsules. IEEE Transactions on Antennas and Propagation, 69(6), 3106–3114. https://doi.org/10.1109/TAP.2020.3037762
  • Bouslama, M., Traii, M., Denidni, T. A., & Gharsallah, A. (2016). Beam-switching antenna with a new reconfigurable frequency selective surface. In IEEE Antennas and Wireless Propagation Letters, 15, 1159–1162. https://doi.org/10.1109/LAWP.2015.2497357.
  • B, S. A., Sundarsingh, E. F., & A, H. (2019, April). A compact conformal windshield antenna for location tracking on vehicular platforms. IEEE Transactions on Vehicular Technology, 68(4), 4047–4050. https://doi.org/10.1109/TVT.2019.2898709
  • Feng, B., Chen, J., Yin, S., Sim, C.-Y.-D., & Zhao, Z. (2020, September). A tri-polarized antenna with diverse radiation characteristics for 5G and V2X communications. IEEE Transactions on Vehicular Technology, 69(9), 10115–10126. https://doi.org/10.1109/TVT.2020.3005959
  • Gu, C., Gao, S., Liu, H., Luo, Q., Loh, T., Sobhy, M., Li, J., Wei, G., Xu, J., Qin, F., Sanz-Izquierdo, B., & Abd-Alhameed, R. A. (2015, December). Compact smart antenna with electronic beam-switching and reconfigurable polarizations. IEEE Transactions on Antennas and Propagation, 63(12), 5325–5333. https://doi.org/10.1109/TAP.2015.2490239
  • Gu, C., Izquierdo, B. S., Gao, S., Batchelor, J. C., Parker, E. A., Qin, F., Wei, G., Li, J., & Xu, J. (2017, March). Dual-band electronically beam-switched antenna using slot active frequency selective surface. IEEE Transactions on Antennas and Propagation, 65(3), 1393–1398. https://doi.org/10.1109/TAP.2016.2647578
  • Han, L., Cheng, G., Han, G., Ma, R., & Zhang, W. (2019, January). Electronically beam-steering antenna with active frequency-selective surface. IEEE Antennas and Wireless Propagation Letters, 18(1), 108–112. https://doi.org/10.1109/LAWP.2018.2882525
  • Hossain, M. A., Bahceci, I., & Cetiner, B. A. (2017, December). Parasitic layer-based radiation pattern reconfigurable antenna for 5G communications. IEEE Transactions on Antennas and Propagation, 65(12), 6444–6452. https://doi.org/10.1109/TAP.2017.2757962
  • Jin, G., Li, M., Liu, D., & Zeng, G. (2018, September). A simple planar pattern-reconfigurable antenna based on arc dipoles. IEEE Antennas and Wireless Propagation Letters, 17(9), 1664–1668. https://doi.org/10.1109/LAWP.2018.2862624
  • Jusoh, M., Aboufoul, T., Sabapathy, T., Alomainy, A., & Kamarudin, M. R. (2014). Pattern-reconfigurable microstrip patch antenna with multidirectional beam for WiMAX application. In IEEE Antennas and Wireless Propagation Letters, 13, 860–863. https://doi.org/10.1109/LAWP.2014.2320818.
  • Jusoh, M., Sabapathy, T., Jamlos, M. F., & Kamarudin, M. R. (2014). Reconfigurable four-parasitic-elements patch antenna for high-gain beam switching application. IEEE Antennas & Wireless Propagation Letters, 13, 79–82. https://doi.org/10.1109/LAWP.2013.2296491
  • Kannappan, L., Palaniswamy, S. K., Kanagasabai, M., Kumar, P., Alsath, M. G. N., Kumar, S., Rao, T. R., Marey, M., Aggarwal, A., & Pakkathillam, J. K. (2022). 3-D twelve-port multi-service diversity antenna for automotive communications. Scientific Reports, 12(1), 403. https://doi.org/10.1038/s41598-021-04318-0
  • Ke, Y.-H., Yang, L.-L., & Chen, J.-X. (2022, March). A pattern-reconfigurable dielectric resonator antenna based on switchable directors. IEEE Antennas and Wireless Propagation Letters, 21(3), 536–540. https://doi.org/10.1109/LAWP.2021.3138084
  • Kim, I. K., Wang, H., Weiss, S. J., & Varadan, V. V. (2012, May). Embedded wideband metaresonator antenna on a high-impedance ground plane for vehicular applications. IEEE Transactions on Vehicular Technology, 61(4), 1665–1672. https://doi.org/10.1109/TVT.2012.2189254
  • Lee, K.-F., & Tong, K.-F. (2012, July). Microstrip patch antennas—basic characteristics and some recent advances. Proceedings of the IEEE, 100(7), 2169–2180. https://doi.org/10.1109/JPROC.2012.2183829
  • Liu, H., Gao, S., & Hong Loh, T. (2011). Compact dual-band antenna with electronic beam-steering and beamforming capability. IEEE Antennas & Wireless Propagation Letters, 10, 1349–1352. https://doi.org/10.1109/LAWP.2011.2177059
  • Llorens, D., Otero, P., & Camacho-Penalosa, C. (2003, January). Dual-band, single CPW port, planar-slot antenna. IEEE Transactions on Antennas and Propagation, 51(1), 137–139. https://doi.org/10.1109/TAP.2003.809105
  • Mahmood, S. M., & Denidni, T. A. (2016). Pattern-reconfigurable antenna using a switchable frequency selective surface with improved bandwidth. In IEEE Antennas and Wireless Propagation Letters, 15, 1148–1151. https://doi.org/10.1109/LAWP.2015.2496501.
  • Mak, K. M., Lai, H. W., & Luk, K. M. (2018, February). A 5G wideband patch antenna with antisymmetric L-shaped Probe feeds. IEEE Transactions on Antennas and Propagation, 66(2), 957–961. https://doi.org/10.1109/TAP.2017.2776973
  • Ntawangaheza, J., Sun, L., Xie, Z., Pang, Y., Zheng, Z., & Rushingabigwi, G. (2021, April). A single-layer low-profile broadband metasurface antenna array for Sub-6 GHz 5G communication systems. IEEE Transactions on Antennas & Propagation, 69(4), 2061–2071. https://doi.org/10.1109/TAP.2020.3027042
  • Pal, A., Mehta, A., Mirshekar-Syahkal, D., & Nakano, H. (2017, August). A twelve-beam steering low-profile patch antenna with shorting vias for vehicular applications. IEEE Transactions on Antennas and Propagation, 65(8), 3905–3912. https://doi.org/10.1109/TAP.2017.2715367
  • Sang-Jun, H., & Won Jung, C. (2011). Reconfigurable beam steering using a microstrip patch antenna with a U-slot for wearable fabric applications. In IEEE Antennas and Wireless Propagation Letters, 10, 1228–1231. https://doi.org/10.1109/LAWP.2011.2174022.
  • Shafi, M., Molisch, A. F., Smith, P. J., Haustein, T., Zhu, P., De Silva, P., Tufvesson, F., Benjebbour, A., & Wunder, G. (2017, June). 5G: A tutorial overview of standards, trials, challenges, deployment, and practice. IEEE Journal on Selected Areas in Communications, 35(6), 1201–1221. https://doi.org/10.1109/JSAC.2017.2692307
  • Shao, Z., & Zhang, Y. (2021, May). A single-layer miniaturized patch antenna based on coupled microstrips. IEEE Antennas and Wireless Propagation Letters, 20(5), 823–827. https://doi.org/10.1109/LAWP.2021.3064908
  • Sundarsingh, E. F., Velan, S., Kanagasabai, M., Sarma, A. K., Raviteja, C., & Alsath, M. G. N. (2014). Polygon-shaped slotted dual-band antenna for wearable applications. In IEEE Antennas and Wireless Propagation Letters, 13, 611–614. https://doi.org/10.1109/LAWP.2014.2313133.
  • Sun, S., Rappaport, T. S., Thomas, T. A., Ghosh, A., Nguyen, H. C., Kovacs, I. Z., Rodriguez, I., Koymen, O., & Partyka, A. (2016, May). Investigation of prediction accuracy, sensitivity, and parameter stability of large-scale propagation path loss models for 5G wireless communications. IEEE Transactions on Vehicular Technology, 65(5), 2843–2860. https://doi.org/10.1109/TVT.2016.2543139
  • Towfiq, M. A., Bahceci, I., Blanch, S., Romeu, J., Jofre, L., & Cetiner, B. A. (2018, October). A reconfigurable antenna with beam steering and beamwidth variability for wireless communications. IEEE Transactions on Antennas and Propagation, 66(10), 5052–5063. https://doi.org/10.1109/TAP.2018.2855668
  • Trinh-Van, S., Lee, J. M., Yang, Y., Lee, K.-Y., & Hwang, K. C. (2019, July). A sidelobe-reduced, four-beam array antenna fed by a modified 4 × 4 Butler matrix for 5G applications. IEEE Transactions on Antennas and Propagation, 67(7), 4528–4536. https://doi.org/10.1109/TAP.2019.2905783
  • Wang, Z., Liu, S., & Dong, Y. (2022, May). Compact wideband pattern reconfigurable antennas inspired by end-fire structure for 5G vehicular communication. IEEE Transactions on Vehicular Technology, 71(5), 4655–4664. https://doi.org/10.1109/TVT.2022.3152354
  • Wen, Y., Wang, B., & Ding, X. (2016, February). A wide-angle scanning and low sidelobe level microstrip phased array based on genetic algorithm optimization. IEEE Transactions on Antennas and Propagation, 64(2), 805–810. https://doi.org/10.1109/TAP.2015.2507173
  • Wong, H., So, K. K., & Gao, X. (2016, March). Bandwidth enhancement of a monopolar patch antenna with V-shaped slot for car-to-car and WLAN communications. IEEE Transactions on Vehicular Technology, 65(3), 1130–1136. https://doi.org/10.1109/TVT.2015.2409886
  • Xu, H., Zhang, B., Duan, J., Cui, J., Xu, Y., Tian, Y., Yan, L., Xiong, M., & Jia, Q. (2018, December). Wide solid angle beam-switching conical conformal array antenna with high gain for 5G applications. IEEE Antennas and Wireless Propagation Letters, 17(12), 2304–2308. https://doi.org/10.1109/LAWP.2018.2873703
  • Zohur, A., Mopidevi, H., Rodrigo, D., Unlu, M., Jofre, L., & Cetiner, B. A. (2013). RF MEMS reconfigurable two-band antenna. In IEEE Antennas and Wireless Propagation Letters, 12, 72–75. https://doi.org/10.1109/LAWP.2013.2238882.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.