137
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Analysis and design of switched capacitor-based Quasi-Z-Source DC-DC converter with improved operation factors

, ORCID Icon &
Received 29 Oct 2022, Accepted 22 Jul 2023, Published online: 10 Aug 2023

References

  • Changchien, S.-K., Liang, T.-J., Chen, J.-F., & Yang, L.-S. (2010). Step-up DC–DC converter by coupled inductor and voltage-lift technique. IET Power Electronics, 3(3), 369–378. https://doi.org/10.1049/iet-pel.2009.0089
  • Chavoshipour Heris, P., Saadatizadeh, Z., Sabahi, M., & Babaei, E. (2019). A new switched‐capacitor/switched‐inductor–based converter with high voltage gain and low voltage stress on switches. International Journal of Circuit Theory and Applications, 47(4), 591–611. https://doi.org/10.1002/cta.2606
  • Chen, S.-M., Liang, T.-J., Yang, L.-S., & Chen, J.-F. (2010). A cascaded high step-up DC–DC converter with single switch for microsource applications. IEEE Transactions on Power Electronics, 26(4), 1146–1153. https://doi.org/10.1109/TPEL.2010.2090362
  • Chen, Y. T., Lin, W. C., & Liang, R. H. (2015). An interleaved high step‐up DC‐DC converter with double boost paths. International Journal of Circuit Theory and Applications, 43(8), 967–983. https://doi.org/10.1002/cta.1986
  • Cheong, S., Chung, S., & Ioinovici, A. (1992). Development of power electronics converters based on switched-capacitor circuits. 1992 IEEE International Symposium on Circuits and Systems, IEEE.
  • Genç, N., & İ̇̇skender, İ. (2012). Teaching of power quality phenomenon based on modeling and simulation of boost type PFC converters. Computer Applications in Engineering Education, 20(1), 149–160. https://doi.org/10.1002/cae.20382
  • Haji-Esmaeili, M. M., Babaei, E., & Sabahi, M. (2018). High step-up quasi-Z source DC–DC converter. IEEE Transactions on Power Electronics, 33(12), 10563–10571. https://doi.org/10.1109/TPEL.2018.2810884
  • Haji-Esmaeili, M. M., Naseri, M., Khoun-Jahan, H., & Abapour, M. (2016). Fault-tolerant and reliable structure for a cascaded quasi-Z-source DC–DC converter. IEEE Transactions on Power Electronics, 32(8), 6455–6467. https://doi.org/10.1109/TPEL.2016.2621411
  • Ho, A.-V., Chun, T.-W., & Kim, H.-G. (2014). Extended boost active-switched-capacitor/switched-inductor quasi-Z-source inverters. IEEE Transactions on Power Electronics, 30(10), 5681–5690. https://doi.org/10.1109/TPEL.2014.2379651
  • Kalahasthi, R. B., Ramteke, M. R., Suryawanshi, H. M., & Kothapalli, K. R. (2022). A high gain soft switched DC–DC converter for renewable applications. International Journal of Electronics, 110(8), 1–21. https://doi.org/10.1080/00207217.2022.2117423
  • Leon-Masich, A., Valderrama-Blavi, H., Bosque-Moncusi, J. M., & Martinez-Salamero, L. (2015). A high-voltage SiC-based boost PFC for LED applications. IEEE Transactions on Power Electronics, 31(2), 1633–1642. https://doi.org/10.1109/TPEL.2015.2418212
  • Liu, Y., Ge, B., & Abu‐Rub, H. (2014). Modelling and controller design of quasi‐Z‐source cascaded multilevel inverter‐based three‐phase grid‐tie photovoltaic power system. IET Renewable Power Generation, 8(8), 925–936. https://doi.org/10.1049/iet-rpg.2013.0221
  • Liu, J., Wu, J., Qiu, J., & Zeng, J. (2019). Switched Z-source/quasi-Z-source DC-DC converters with reduced passive components for photovoltaic systems. IEEE Access, 7, 40893–40903. https://doi.org/10.1109/ACCESS.2019.2907300
  • Madeira, R., & Paulino, N. (2016). Analysis and implementation of a power management unit with a multiratio switched capacitor DC–DC converter for a supercapacitor power supply. International Journal of Circuit Theory and Applications, 44(11), 2018–2034. https://doi.org/10.1002/cta.2209
  • Man Dwari, S., & Parsa, L. (2007). A novel high efficiency high power interleaved coupled-inductor boost DC-DC converter for hybrid and fuel cell electric vehicle. 2007 IEEE vehicle power and propulsion conference, IEEE.
  • Nguyen, M.-K., Lim, Y.-C., & Cho, G.-B. (2011). Switched-inductor quasi-Z-source inverter. IEEE Transactions on Power Electronics, 26(11), 3183–3191. https://doi.org/10.1109/TPEL.2011.2141153
  • Padmavathi, P., & Natarajan, S. (2020). Single switch quasi Z‐source based high voltage gain DC‐DC converter. International Transactions on Electrical Energy Systems, 30(7), e12399. https://doi.org/10.1002/2050-7038.12399
  • Pan, C.-T., Chuang, C.-F., & Chu, C.-C. (2013). A novel transformer-less adaptable voltage quadrupler DC converter with low switch voltage stress. IEEE Transactions on Power Electronics, 29(9), 4787–4796. https://doi.org/10.1109/TPEL.2013.2287020
  • Poorali, B., & Adib, E. (2019). Soft-switched high step-up quasi-Z-source DC–DC converter. IEEE Transactions on Industrial Electronics, 67(6), 4547–4555. https://doi.org/10.1109/TIE.2019.2922948
  • Raveendran, A., Paul, E., & Ommen, A. P. (2015). Quasi-Z-source dc-dc converter with switched capacitor. International Journal of Engineering Research and General Science, 3(4), 1132–1137.
  • Rostami, S., Abbasi, V., & Blaabjerg, F. (2019). Implementation of a common grounded Z‐source DC–DC converter with improved operation factors. IET Power Electronics, 12(9), 2245–2255. https://doi.org/10.1049/iet-pel.2018.6044
  • Rostami, S., Abbasi, V., & Kerekes, T. (2019). Switched capacitor based Z‐source DC–DC converter. IET Power Electronics, 12(13), 3582–3589. https://doi.org/10.1049/iet-pel.2019.0633
  • Sun, D., Ge, B., Liang, W., Abu-Rub, H., & Peng, F. Z. (2015). An energy stored quasi-Z-source cascade multilevel inverter-based photovoltaic power generation system. IEEE Transactions on Industrial Electronics, 62(9), 5458–5467. https://doi.org/10.1109/TIE.2015.2407853
  • Takiguchi, T., & Koizumi, H. (2013). Quasi-Z-source dc-dc converter with voltage-lift technique. IECON 2013-39th Annual Conference of the IEEE Industrial Electronics Society, IEEE.
  • Tofoli, F. L., Pereira, D. D. C., Josias de Paula, W., & Oliveira Junior, D. D. S. (2015). Survey on non‐isolated high‐voltage step‐up dc–dc topologies based on the boost converter. IET Power Electronics, 8(10), 2044–2057. https://doi.org/10.1049/iet-pel.2014.0605
  • Tseng, K.-C., Lin, J.-T., & Huang, C.-C. (2014). High step-up converter with three-winding coupled inductor for fuel cell energy source applications. IEEE Transactions on Power Electronics, 30(2), 574–581. https://doi.org/10.1109/TPEL.2014.2309793
  • Veerachary, M., & Kumar, P. (2020). Analysis and design of quasi-Z-source equivalent DC–DC boost converters. IEEE Transactions on Industry Applications, 56(6), 6642–6656. https://doi.org/10.1109/TIA.2020.3021372
  • Vinnikov, D., & Roasto, I. (2010). Quasi-Z-source-based isolated DC/DC converters for distributed power generation. IEEE Transactions on Industrial Electronics, 58(1), 192–201. https://doi.org/10.1109/TIE.2009.2039460
  • Vinnikov, D., Roasto, I., Strzelecki, R., & Adamowicz, M. (2011). Step-up DC/DC converters with cascaded quasi-Z-source network. IEEE Transactions on Industrial Electronics, 59(10), 3727–3736. https://doi.org/10.1109/TIE.2011.2178211
  • Walker, G. R., & Sernia, P. C. (2004). Cascaded DC-DC converter connection of photovoltaic modules. IEEE Transactions on Power Electronics, 19(4), 1130–1139. https://doi.org/10.1109/TPEL.2004.830090
  • Wang, Q., Wang, Y., Liu, X., Zhang, S., & Guo, G. (2022). A soft-switching high gain DC–DC converter for renewable energy systems. International Journal of Electronics, 109(4), 553–575. https://doi.org/10.1080/00207217.2021.1914189
  • Wang, P., Zhou, L., Zhang, Y., Li, J., & Sumner, M. (2017). Input-parallel output-series DC-DC boost converter with a wide input voltage range, for fuel cell vehicles. IEEE Transactions on Vehicular Technology, 66(9), 7771–7781. https://doi.org/10.1109/TVT.2017.2688324
  • Wu, G., Ruan, X., & Ye, Z. (2014). Nonisolated high step-up DC–DC converters adopting switched-capacitor cell. IEEE Transactions on Industrial Electronics, 62(1), 383–393. https://doi.org/10.1109/TIE.2014.2327000
  • Yang, L.-S., Liang, T.-J., & Chen, J.-F. (2009). Transformerless DC–DC converters with high step-up voltage gain. IEEE Transactions on Industrial Electronics, 56(8), 3144–3152. https://doi.org/10.1109/TIE.2009.2022512
  • Yang, L., Qiu, D., Zhang, B., Zhang, G., & Xiao, W. (2014). A modified Z-source DC-DC converter. 2014 16th European Conference on Power Electronics and Applications, IEEE.
  • Ye, Y. M., & Eric Cheng, K. W. (2014). Quadratic boost converter with low buffer capacitor stress. IET Power Electronics, 7(5), 1162–1170. https://doi.org/10.1049/iet-pel.2013.0205
  • Zhu, B., Ren, L., & Wu, X. (2017). Kind of high step‐up dc/dc converter using a novel voltage multiplier cell. IET Power Electronics, 10(1), 129–133. https://doi.org/10.1049/iet-pel.2016.0354
  • Zhu, X., & Zhang, B. (2017). High step-up quasi-Z-source DC-DC converters with single switched capacitor branch. Journal of Modern Power Systems and Clean Energy, 5(4), 537–547. https://doi.org/10.1007/s40565-017-0304-1
  • Zhu, X., Zhang, B., Li, Z., Li, H., & Ran, L. (2016). Extended switched-boost DC-DC converters adopting switched-capacitor/switched-inductor cells for high step-up conversion. IEEE Journal of Emerging and Selected Topics in Power Electronics, 5(3), 1020–1030. https://doi.org/10.1109/JESTPE.2016.2641928

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.