210
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A low-power, low-offset, and power-scalable comparator suitable for low-frequency applications

ORCID Icon, ORCID Icon & ORCID Icon
Received 05 Feb 2023, Accepted 08 Jul 2023, Published online: 18 Aug 2023

References

  • Abu, N., Bukhari, W., Ong, C., Kassim, A., Izzuddin, T., Sukhaimie, M., Norasikin, M., & Rasid, A. (2022). Internet of things applications in precision agriculture: A review. Journal of Robotics and Control (JRC), 3(3), 338–347. https://doi.org/10.18196/jrc.v3i3.14159
  • AlMarashli, A., Anders, J., & Ortmanns, M. (2016). A hybrid comparator for high resolution sar adc. in 2016 IEEE International Symposium on Circuits and Systems (ISCAS), IEEE, pp. 1050–1053.
  • Baker, R. J. (2008). CMOS: Mixed-signal circuit design. john Wiley & sons.
  • Baradaranrezaeii, A., Shino, O., Hadidi, K., & Khoei, A. (2015). An ultra high-speed high-resolution low-offset low-power voltage comparator with a reliable offset cancellation method for high-performance applications in 0.18 μm CMOS technology. Analog Integrated Circuits and Signal Processing, 85(1), 181–192. https://doi.org/10.1007/s10470-015-0604-1
  • Behera, K. C., Santosh, M., & Bose, S. (2016). A low-power 12-bit sar adc for remote pressure measurement. Analog Integrated Circuits and Signal Processing, 86(1), 99–114. https://doi.org/10.1007/s10470-015-0656-2
  • Bindra, H. S., Ponte, J., & Nauta, B. (2022). A 174μvrms input noise, 1 g8/s comparator in 22nm fdsoi with a dynamic-bias preamplifier using tail charge pump and capacitive neutralization across the latch. in 2022 IEEE International Solid-State Circuits Conference (ISSCC), Vol. 65, IEEE, pp. 1–3.
  • Chen, X., Zhao, B., Wang, Y., Xu, S., & Gao, X. (2018). Control of a 7-dof robotic arm system with an ssvep-based bci. International Journal of Neural Systems, 28(8), 1850018. https://doi.org/10.1142/S0129065718500181
  • Chin, S.-M., Hsieh, C.-C., Chiu, C.-F., & Tsai, H.-H. (2010). A new rail-to-rail comparator with adaptive power control for low power SAR ADCs in biomedical application. in Proceedings of 2010 IEEE International Symposium on Circuits and Systems, IEEE, pp. 1575–1578.
  • de La Fuente-Cortes, G., Espinosa Flores-Verdad, G., Gonzalez- Diaz, V. R., & Diaz-Mendez, A. (2017). A new CMOS comparator robust to process and temperature variations for sar adc converters. Analog Integrated Circuits and Signal Processing, 90(2), 301–308. https://doi.org/10.1007/s10470-016-0916-9
  • Du, Y., Chen, J., Zhao, C., Liu, C., Liao, F., & Chan, C.-Y. (2022). Comfortable and energy-efficient speed control of au- tonomous vehicles on rough pavements using deep reinforcement learning. Transportation Research Part C: Emerging Technologies, 134, 103489. https://doi.org/10.1016/j.trc.2021.103489
  • Fayomi, C., Wirth, G. I., Binkley, D., & Matsuzawa, A. (2009). An experimental 0.6-v 57.5-fj/conversion-step 250-ks/s 8-bit rail-to-rail successive approximation ADC in 0.18 μm CMOS. in 2009 16th IEEE International Conference on Electronics, Circuits and Systems-(ICECS 2009), IEEE, pp. 195–198.
  • Figueiredo, P., & Vital, J. (2006). Kickback noise reduction techniques for CMOS latched comparators. Circuits and Systems II: Express Briefs, IEEE Transactions on 53, IEEE, pp. 541–545.
  • Ghasemian, H., Ghasemi, R., Abiri, E., & Salehi, M. R. (2019). A novel high-speed low-power dynamic comparator with com- plementary differential input in 65 nm CMOS technology. Microelectronics Journal, 92, 104603. https://doi.org/10.1016/j.mejo.2019.104603
  • Guo, X., Wang, Z., He, F., Qi, H., Chen, L., Li, C., Wang, Y., & Ming, D. (2021). A high-precision, low-cost, wireless, multi- channel electrogastrography system. in 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), IEEE, pp. 6779–6782.
  • Hassanpourghadi, M., Zamani, M., & Sharifkhani, M. (2014). A low-power low-offset dynamic comparator for analog to digital converters. Microelectronics Journal, 45(2), 256–262. https://doi.org/10.1016/j.mejo.2013.11.012
  • Huang, S., Diao, S., & Lin, F. (2016). An energy-efficient high- speed CMOS hybrid comparator with reduced delay time in 40-nm CMOS process. Analog Integrated Circuits and Signal Processing, 89(1), 231–238. https://doi.org/10.1007/s10470-016-0811-4
  • Huijing, Y., Shichang, L., & Mingyuan, R. (2023). A low off- set low power CMOS dynamic comparator for analog to digital converters. Integration, 91, 136–143. https://doi.org/10.1016/j.vlsi.2023.03.007
  • Hung, K. K., Ko, P. K., Hu, C., & Cheng, Y. C. (1990). A physics-based MOSFET noise model for circuit simulators. IEEE Transactions on Electron Devices, 37(5), 1323–1333. https://doi.org/10.1109/16.108195
  • Joy, J., & Kandpal, K. (2016). Design of a 1v subthreshold comparator for bio-medical over sampled adcs. in 2016 3rd International Conference on Devices, Circuits and Systems (ICDCS), IEEE, pp. 300–305.
  • Khong, W., Mariappan, M., & Rao, N. (2019). National instruments LabVIEW biomedical toolkit for measuring heart beat rate and ecg lead ii features. IOP Conference Series: Materials Science and Engineering 705, 012020.
  • Kodali, R. K., & Yerroju, S. (2018). Energy efficient home automation using iot. in 2018 International Conference on Communication, Computing and Internet of Things (IC3IoT), IEEE, pp. 151–154.
  • Kumamoto, T., Nakaya, M., Honda, H., Asai, S., Akasaka, Y., & Horiba, Y. (1986). An 8-bit high-speed CMOS A/D con- verter. IEEE Journal of Solid-State Circuits, 21(6), 976–982. https://doi.org/10.1109/JSSC.1986.1052638
  • Lan, S., Yuan, C., Lam, Y. Y., & Siek, L. (2011). An ultra low- power rail-to-rail comparator for ADC designs. in 2011 IEEE 54th International Midwest Symposium on Circuits and Sys- tems (MWSCAS), IEEE, pp. 1–4.
  • LEE, H.-Y., HSU, C.-M., HUANG, S.-C., SHIH, Y.-W., & LUO, C.-H. (2005). Designing low power of sigma delta modulator for biomedical application. Biomedical Engineering- Applications Basis Communications - BIOMED ENG-APPL BASIS COMMUN, 17(04), 181–185. https://doi.org/10.4015/S1016237205000287
  • Lee, T.-S., Luo, L.-D., & Lin, C.-S. (2004). Design techniques for a CMOS low-power low-voltage fully differential flash analog- to-digital converter. in The 2004 47th Midwest Symposium on Circuits and Systems, 2004. MWSCAS’04. Vol. 1, IEEE, pp. I–357.
  • Li, S. (2019). CMOS Receiver Design for 802.11 ac Standard Using Offline Calibrated Active Inductor Based Band Pass Filter in 90 nm Technology, PhD thesis, Wright State University.
  • Lie, D., Das, V., Hu, W., Liu, Y., & Nguyen, T. (2013). A low- power CMOS analog front-end ic with adjustable on-chip filters for biosensors. Open Journal of Applied Biosensor, 2(4), 104–111. https://doi.org/10.4236/ojab.2013.24014
  • Martinek, R., Ladrova, M., Sidikova, M., Jaros, R., Behbehani, K., Kahankova, R., & Kawala-Sterniuk, A. (2021). Advanced bioelectrical signal processing methods: Past, present and future approach—part i: Cardiac signals. Sensors, 21(15), 5186. https://doi.org/10.3390/s21155186
  • Miyahara, M., & Matsuzawa, A. (2009). A low-offset latched comparator using zero-static power dynamic offset cancellation technique. in 2009 IEEE Asian Solid-State Circuits Conference, IEEE, pp. 233–236.
  • Na, R., Hu, C., Sun, Y., Wang, S., Zhang, S., Han, M., Yin, W., Zhang, J., Chen, X., & Zheng, D. (2021). An embedded lightweight ssvep-bci electric wheelchair with hybrid stimulator. Digital Signal Processing, 116, 103101. https://doi.org/10.1016/j.dsp.2021.103101
  • Na, R., Zheng, D., Sun, Y., Han, M., Wang, S., Zhang, S., Hui, Q., Chen, X., Zhang, J., & Hu, C. (2022). A wearable low-power collaborative sensing system for high-quality ssvep-bci signal acquisition. IEEE Internet of Things Journal, 9(10), 7273–7285. https://doi.org/10.1109/JIOT.2021.3113910
  • Nuzzo, P., Van der Plas, G., De Bernardinis, F., Van der Perre, L., Gyselinckx, B., & Terreni, P. (2006). A 10.6 mw/0.8 pj power-scalable 1gs/s 4b adc in 0.18 μm CMOS with 5.8 ghz erbw. in Proceedings of the 43rd annual Design Automation Conference, ACM Digital Library, pp. 873–878.
  • Park, H., Yu, C., Kim, H., Roh, Y., & Burm, J. (2020). Low power CMOS image sensors using two step single slope adc with bandwidth-limited comparators & voltage range extended ramp generator for battery-limited application. IEEE Sensors Journal, 20(6), 2831–2838. https://doi.org/10.1109/JSEN.2019.2957043
  • Qian, X., & Teo, T. H. (2009). A low-power comparator with programmable hysteresis level for blood pressure peak detection. in TENCON 2009 - 2009 IEEE Region 10 Conference, IEEE, pp. 1–4.
  • Rabaey, J. M., Chandrakasan, A. P., & Nikolić, B. (2003). Digital integrated circuits: A design perspective. Pearson Education, Incorporated.
  • Raju Thoutam, L., Rajya Vardhini, G., Ramya, K., Neeraj, M., Ravikumar, S., & Ajayan, J. (2022). Design of low power 2-bit flash adc using high performance dynamic double tail comparator. in 2022 IEEE International Conference on Nano- electronics, Nanophotonics, Nanomaterials, Nanobioscience & Nanotechnology (5NANO), IEEE, pp. 1–5.
  • Razavi, B. (2020). The design of a comparator [the analog mind]. IEEE Solid-State Circuits Magazine, 12(4), 8–14. https://doi.org/10.1109/MSSC.2020.3021865
  • Razavi, B., & Wooley, B. (1992). Design techniques for high- speed, high-resolution comparators. IEEE Journal of Solid- State Circuits, 27(12), 1916–1926. https://doi.org/10.1109/4.173122
  • Santana, L. M., Martens, E., Lagos, J., Hershberg, B., Wambacq, P., & Craninckx, J. (2022). A 950 mhz clock 47.5 mhz bw 4.7 mw 67 db sndr discrete time delta sigma adc leveraging ring amplification and split-source comparator based quantizer in 28 nm cmos. IEEE Journal of Solid-State Circuits, 57(7), 2068–2077. https://doi.org/10.1109/JSSC.2022.3163819
  • Schinkel, D., Mensink, E., Klumperink, E. A., van Tuijl, A. J. M., & Nauta, B. (2007). A low-offset double-tail latch-type voltage sense amplifier. in 18th Annual Workshop on Circuits, Systems and Signal Processing, ProRISC 2007. STW, pp. 89–94.
  • Teo, T. H., Lim, G. K., Sutomo David, D., Tan, K. H., Gopalakrishnan, P. K., & Singh, R. (2007). Ultra low-power sensor node for wireless health monitoring system. in 2007 IEEE International Symposium on Circuits and Systems (ISCAS), IEEE, pp. 2363–2366.
  • Thakur, D., Sharma, K., & Sharma, R. (2021). Ultra low-power low-pass filter design for wearable biomedical applications. in 2021 Devices for Integrated Circuit (DevIC), IEEE, pp. 629–632.
  • Van Assche, J., & Gielen, G. (2020). Power efficiency comparison of event-driven and fixed-rate signal conversion and compression for biomedical applications. IEEE Transactions on Biomedical Circuits and Systems, 14(4), 746–756. https://doi.org/10.1109/TBCAS.2020.3009027
  • Wang, S.-H., & Hung, C.-C. (2020). A 0.3v 10b 3ms/s sar adc with comparator calibration and kickback noise reduction for biomedical applications. IEEE Transactions on Biomedical Circuits and Systems, 14(3), 558–569. https://doi.org/10.1109/TBCAS.2020.2982912
  • Webster, J. G. (2009). Medical instrumentation: Application and design. John Wiley & Sons.
  • Wilson, W., Massoud, H., Swanson, E., George, R., & Fair, R. (1985). Measurement and modeling of charge feedthrough in n-channel mos analog switches. IEEE Journal of Solid-State Circuits, 20(6), 1206–1213. https://doi.org/10.1109/JSSC.1985.1052460
  • Wong, C. M., Tang, Q., Nuno da Cruz, J., & Wan, F. (2015). A multi-channel ssvep-based bci for computer games with analogue control, in 2015 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA), IEEE, pp. 1–6.
  • Wulff, C., & Ytterdal, T. (2011). Comparator-based switched- capacitor pipelined analog-to-digital converter with compara- tor preset, and comparator delay compensation. Analog Integrated Circuits and Signal Processing, 67(1), 31–40. https://doi.org/10.1007/s10470-010-9576-3
  • Xu, W., & Friedman, E. G. (2002). Clock feedthrough in CMOS analog transmission gate switches. in 15th Annual IEEE International ASIC/SOC Conference, IEEE, pp. 181–185.
  • Yang, H. Y., & Sarpeshkar, R. (2006). A bio-inspired ultra- energy-efficient analog-to-digital converter for biomedical applications. IEEE Transactions on Circuits & Systems I: Regular Papers, 53(11), 2349–2356. https://doi.org/10.1109/TCSI.2006.884463
  • Yaqoob, T., Abbas, H., & Atiquzzaman, M. (2019). Security vulnerabilities, attacks, countermeasures, and regulations of networked medical devices—a review. IEEE Communications Surveys & Tutorials, 21(4), 3723–3768. https://doi.org/10.1109/COMST.2019.2914094
  • Yoon, K. S., & Choi, J. H. (2018). Design of an inverter-based 3 rd order delta-sigma CMOS modulator using a 1.5 bit comparator and analog adder. Journal of Semiconductor Technology and Science, 18(1), 49–56. https://doi.org/10.5573/JSTS.2018.18.1.049
  • Zhang, D., Bhide, A. K., & Alvandpour, A. (2010). Design of CMOS sampling switch for ultra-low power adcs in biomedical applications. in NORCHIP 2010, IEEE, pp. 1–4.
  • Zhang, X., Li, S., Siferd, R., & Ren, S. (2020). High-sensitivity high-speed dynamic comparator with parallel input clocked switches. AEU-International Journal of Electronics and Communications, 122, 153236. https://doi.org/10.1016/j.aeue.2020.153236
  • Zhang, X., Yao, L., Zhang, S., Kanhere, S., Sheng, M., & Liu, Y. (2018). Internet of things meets brain–computer interface: A unified deep learning framework for enabling human- thing cognitive interactivity. IEEE Internet of Things Journal, 6(2), 2084–2092. https://doi.org/10.1109/JIOT.2018.2877786

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.