27
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Programmable PVT compensated dual output resistance tunable current controlled conveyor

, , , &
Received 20 Jun 2022, Accepted 29 Sep 2023, Published online: 10 Oct 2023

References

  • Al-Shahrani, S. M., Al-Gahtani, M. A.: A New Polyphase current-mode filter using digitally-programmable CCCII. In: International Conference on Microelectronics, Dhahran, 142–145. (2006). https://doi.org/10.1109/ICM.2006.373287.
  • Alzaher, H. (2011). A.: A CMOS highly linear digitally programmable active-RC design approach IEEE Trans. IEEE Transactions on Circuits & Systems I: Regular Papers, 58(11), 2636–2646. https://doi.org/10.1109/TCSI.2011.2157737
  • Ansari, M. S., Khan, M. Z.: Digitally programmable first-order current mode continuous-time filters. In: 2nd International Conference on Power, Control and Embedded Systems, Allahabad. 1–6. (2012). https://doi.org/10.1109/ICPCES.2012.6508039.
  • Ansari, M. S., Soni, G. S. Digitally-programmable fully-differential current-mode first-order LP, HP and AP filter sections. In: International Conference on Signal Propagation and Computer Technology (ICSPCT 2014), Ajmer, India. 524–528. (2014). https://doi.org/10.1109/ICSPCT.2014.6884963.
  • Bai, C., Wu, J., & Deng, X. (2019). A review of CMOS variable gain amplifiers and programmable gain amplifiers. Iete Technical Review, 36(5), 484–500. https://doi.org/10.1080/02564602.2018.1507766
  • Beg, P., Badoni, R. S., Ansari, M. S. and Kulshreshtha, P. (2013). Programmable voltage mode resistorless multifunctional filter using CCCCTA. in Proc. IEEE International Conference of The Next Generation Information Technology Noida 441–445. https://doi.org/10.1049/cp.2013.2353.
  • Chanapromma, C., Jaikla, W., Siripruchyanun, M. A digitally programmable voltage-mode multifunction filter using CCDVCCs. In: 9th International Symposium on Communications and Information Technology, Icheon, 897–900. (2009). https://doi.org/10.1109/ISCIT.2009.5340973.
  • Chen, H.-P., Hwang, Y.-S., & Ku, Y.-T. (2018). A New resistorless and electronic tunable Third-order Quadrature Oscillator with Current and voltage outputs. Iete Technical Review, 35(4), 426–438. https://doi.org/10.1080/02564602.2017.1324329
  • Chen, G., Li, Z., Su, H., Zhang, L., Li, W.: A 5th-order Chebyshev active RC complex filter with automatic frequency tuning for wireless sensor networks application. In: International Symposium on Signals, Systems and Electronics, Nanjing, 1–4. (2010). https://doi.org/10.1109/ISSSE.2010.5607135.
  • Chong, K. F., Siek, L., Lau, B. A PLL with a VCO of improved PVT tolerance. In: International Symposium on Integrated Circuits, Singapore, 464–467. (2011). https://doi.org/10.1109/ISICir.2011.6131997
  • El-Adawy, A. A. A., Soliman, A. M., & Elwan, H. O. (2002). Low voltage digitally controlled CMOS Current conveyor. AEU - International Journal of Electronics & Communications, 56(3), 137–144. https://doi.org/10.1078/1434-8411-54100086
  • Fabre, A., & Alami, M. (1997). A precise macromodel for second generation current conveyors. IEEE Transactions on Circuits & Systems I: Fundamental Theory & Applications, 44(7), 639–642. https://doi.org/10.1109/81.596946
  • Fabre, A., Saaid, O., Wiest, F., & Boucheron, C. (1996). High frequency applications based on a new current controlled conveyor. IEEE Transactions on Circuits & Systems I: Fundamental Theory & Applications, 43(2), 82–91. https://doi.org/10.1109/81.486430
  • Fan, X., Zhang, L., Zhu, C.: An active-gm-RC structured CMOS analog filter with time constant auto-tuning.In: International Conference on Wireless Communications Networking and Mobile Computing (WiCOM), Chengdu. 1–4. (2010). https://doi.org/10.1109/WICOM.2010.5601380.
  • Ferri, G., & Guerrini, N. C. (2003). Low voltage low power CMOS Current conveyors. Kluwar Academic Publications.
  • Gao, J., Jiang, H., Zhang, L., Dong, J., Wang, Z.: A programmable low-pass filter with adaptive miller compensation for zero-IF transceiver. In: IEEE 55th International Midwest Symposium on Circuits and Systems (MWSCAS), Boise, ID. 226–229. (2012). https://doi.org/10.1109/MWSCAS.2012.6291998.
  • Hamed, H. F., Salama, A. E.: A wideband BiCMOS current conveyor and its applications as a programmable filter. In: 12th International Conference on Microelectronics. (IEEE Cat. No.00EX453), Tehran, Iran, 91–94. (2000). https://doi.org/10.1109/ICM.2000.916421.
  • Hassan, T. M., Mahmoud, S. A.: Low voltage digitally programmable band-pass filter with independent control. In: IEEE International Conference on Signal Processing and Communications, Dubai. 81–84. (2007). https://doi.org/10.1109/ICSPC.2007.4728260.
  • Hassan, T. M., Mahmoud, S. A.: New CMOS digitally controlled variable gain amplifier. In: International Conference on Microelectronics, Sharjah. 23–26. (2008). https://doi.org/10.1109/ICM.2008.5393795.
  • Imran, A., Siddiqi, M. A.: Digitally programmable multifunctional filter and multiphase oscillator using MOCCCII. In: International Conference on Advances in Recent Technologies in Communication and Computing, Kottayam. 56–59. (2010). https://doi.org/10.1109/ARTCom.2010.84.
  • Jangsamsi, N., Pukkalanun, T., Tangsrirat, W.: CCCII-based high-output impedance current-mode universal filter employing only grounded capacitors. In: SICE-ICASE International Joint Conference, Busan. 5695–5698. (2006). https://doi.org/10.1109/SICE.2006.314635.
  • Khan, M. Z., Ansari, M. S., Siddiqui, M. J.: Digitally programmable second-order current mode continuous-time filters. In: Saudi International Electronics, Communications and Photonics Conference, Fira. 1–4. (2013). https://doi.org/10.1109/SIECPC.2013.6550752.
  • Khan, I. A., & Nahhas, A. M. (2012). Reconfigurable voltage mode phase shifter using low voltage digitally controlled CMOS CCII. Electrical and Electronic Engineering, 2(4), 226–229. https://doi.org/10.5923/j.eee.20120204.08
  • Khan, I. A., Simsim, M. T.: An ASK modulator for RFID applications using low voltage digitally programmable CMOS-CCII. In:Saudi International Electronics, Communications and Photonics Conference, Fira. 1–4. (2013). https://doi.org/10.1109/SIECPC.2013.6551008.
  • Khan, I. A., Simsim, M. T. A novel impedance multiplier using low voltage digitally controlled CCII. In: IEEE GCC Conference and Exhibition (GCC), Dubai. 331–334. (2011). https://doi.org/10.1109/IEEEGCC.2011.5752525.
  • Li, Y., Wang, C., Zhu, B., & Hu, Z. (2018). Universal current-mode filters based on OTA and MO-CCCA. IETE Journal of Research, 64(6), 61–10. https://doi.org/10.1080/03772063.2017.1381575
  • Mahmoud, S. A.: Low voltage current-mode digitally controlled VGA based on digitally programmable current conveyors. In: 51st Midwest Symposium on Circuits and Systems, Knoxville, TN. 814–817. (2008). https://doi.org/10.1109/MWSCAS.2008.4616924.
  • Mahmoud, S. A., & Soliman, E. A. (2012). Digitally programmable second generation current conveyor-based FPAA. International Journal of Circuit Theory and Applications, 41(10), 1074–1084. https://doi.org/10.1002/cta.1826
  • Palumbo, G., Palmisano, S., & Pennisi, S. (1999). CMOS Current amplifiers. Kluwer Academic Publishers.
  • Pandey, N., Paul, S. K., & Jain, S. (2009). B.: A new electronically tunable current mode universal filter using MO-CCCII. Analog Integrated Circuits for Signal Processing, 58(2), 171–178. https://doi.org/10.1007/s10470-008-9232-3
  • Patel, S., & Naik, A. Design of start-up enabled bandgap voltage reference. In: International Conference on Devices, Circuits and Systems, India, 18–22. (2022). https://doi.org/10.1109/ICDCS54290.2022.9780858
  • Said, L. A., Madian, A. H., Isamil, M. H., Soliman, A. M.: CMOS digitally programmable lossless floating inductor. In: IEEE International Conference of Electron Devices and Solid-State Circuits (EDSSC), Hong Kong. 1–4. (2010). https://doi.org/10.1109/EDSSC.2010.5713736.
  • Sedra, A., & Smith, K. (1990). A second-generation current conveyor and its applications. IEEE Transactions on Circuit Theory, 17(1), 132–134. https://doi.org/10.1109/TCT.1970.1083067
  • Shen, C. J., Chen, M. T.Jenn-Gang Chern, J. G. Start-up circuit for bandgap reference, US Patent 9,710,010 B2. (2017).
  • Singh, D., Afzal, N., Choudekar, P. Y., K, S.: CMOS digitally programmable grounded inductor. In: International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India. 492–496. (2014). https://doi.org/10.1109/SPIN.2014.6777003.
  • Sobhi, J., Karamzadeh, K., Moharrami, H., Yousefi, M., Design of a programmable bandgap reference circuit. In: IEEE Conference on Industrial Electronics and Applications, China, 2456–2450. (2009). https://doi.org/10.1109/ICIEA.2009.5138644
  • Soliman, E. A., Mahmoud, S. A.: Multi-standard receiver baseband chain using digitally programmable OTA based on CCII and Current division networks. In: International Conference on Engineering and Technology (ICET), Cairo, 1–5. (2012a). https://doi.org/10.1109/ICEngTechnol.2012.6396167.
  • Soliman, E. A., Mahmoud, S. A.: Voltage-mode field programmable analog array using second generation Current conveyor. In: IEEE 55th International Midwest Symposium on Circuits and Systems (MWSCAS), Boise, ID. 710–713. (2012b). https://doi.org/10.1109/MWSCAS.2012.6292119.
  • Tiwari, M. K., Pandey, N., & Paul, S. K. (2020). Novel realizations of digitally controlled low power current controlled current conveyor for tuning filter outputs with constant power consumption. Sādhanā, 45(1). https://doi.org/10.1007/s12046-020-01446-7
  • Toumazou, C., Lidgey, F. J., & Haigh, D. G. (1990). Analogue IC design: The current-mode approach. Peter Peregrinus Ltd.
  • Vista, J., Pheiroijam, N. M., Pamu, H., Tarunkumar, H., & Ranjan, A. (2019). A novel differential voltage Current conveyor (DVCC) based instrumentation amplifier. IETE Journal of Research, 68(1), 1–12. https://doi.org/10.1080/03772063.2019.1602482
  • Weste, N. H. E., & Harris, D. (2005). CMOS VLSI design: A Circuits and Systems perspective (3rd ed.). Addison-Wesley.
  • Zhiqiang, G., Zhiheng, L., Zhengxiong, H., Yonglai, Z., Xinyuan, Z.: A UHF CMOS gm-C bandpass filter and automatic tuning design. In: Academic Symposium on Optoelectronics and Microelectronics Technology and 10th Chinese-Russian Symposium on Laser Physics and Laser Technology Optoelectronics Technology (ASOT). 381–385. (2010). https://doi.org/10.1109/RCSLPLT.2010.5615323.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.