109
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Tunable floating and grounded memristor emulator model

, , , , & ORCID Icon
Received 15 Mar 2023, Accepted 03 Sep 2023, Published online: 07 Nov 2023

References

  • Adhikari, S. P., Sah, M. P., Kim, H., & Chua, L. O. (2013). Three fingerprints of memristor. IEEE Transactions on Circuits & Systems I: Regular Papers, 60(11), 3008–3021. https://doi.org/10.1109/TCSI.2013.2256171
  • Ayten, U. E., Minaei, S., & Sağbaş, M. (2017). Memristor emulator circuits using single cbta. AEU-International Journal of Electronics and Communications, 82, 109–118. https://doi.org/10.1016/j.aeue.2017.08.008
  • Babacan, Y., Yesil, A., & Kacar, F. (2017). Memristor emulator with tunable characteristic and its experimental results. AEU-International Journal of Electronics and Communications, 81, 99–104. https://doi.org/10.1016/j.aeue.2017.07.012
  • Bhardwaj, K., & Srivastava, M. (2022). New multiplier-less compact tunable charge-controlled memelement emulator using grounded passive elements. Circuits, Systems, and Signal Processing, 41(5), 2429–2465. https://doi.org/10.1007/s00034-021-01895-3
  • Chanthbouala, A., Garcia, V., Cherifi, R. O., Bouzehouane, K., Fusil, S., Moya, X., Xavier, S., Yamada, H., Deranlot, C., Mathur, N. D., Bibes, M., Barthélémy, A., & Grollier, J. (2012). A ferroelectric memristor. Nature Materials, 11(10), 860–864. https://doi.org/10.1038/nmat3415
  • Chen, H.-P., Hwang, Y.-S., & Ku, Y.-T. (2017). A systematic realization of third-order quadrature oscillator with controllable amplitude. AEU-International Journal of Electronics and Communications, 79, 64–73. https://doi.org/10.1016/j.aeue.2017.05.039
  • Chua, L. (1971). Memristor-the missing circuit element. IEEE Transactions on Circuit Theory, 18(5), 507–519. https://doi.org/10.1109/TCT.1971.1083337
  • Chua, L. O., & Kang, S. M. (1976). Memristive devices and systems. Proceedings of the IEEE, 64(2), 209–223. https://doi.org/10.1109/PROC.1976.10092
  • Gupta, S., & Rai, S. K. (2020). New grounded and floating decremental/incremental memristor emulators based on cdta and its application. Wireless Personal Communications, 113(2), 773–798. https://doi.org/10.1007/s11277-020-07252-y
  • Joglekar, Y. N., & Wolf, S. J. (2009). The elusive memristor: Properties of basic electrical circuits. European Journal of Physics, 30(4), 661. https://doi.org/10.1088/0143-0807/30/4/001
  • Kanyal, G., Kumar, P., Paul, S. K., & Kumar, A. (2018). Ota based high frequency tunable resistorless grounded and floating memristor emulators. AEU-International Journal of Electronics and Communications, 92, 124–145. https://doi.org/10.1016/j.aeue.2018.05.027
  • Kim, H., Sah, M. P., Yang, C., Cho, S., & Chua, L. O. (2012). Memristor emulator for memristor circuit applications. IEEE Transactions on Circuits & Systems I: Regular Papers, 59(10), 2422–2431. https://doi.org/10.1109/TCSI.2012.2188957
  • Pal, I., Kumar, V., Aishwarya, N., Nayak, A., & Islam, A. (2020). A vdta-based robust electronically tunable memristor emulator circuit. Analog Integrated Circuits and Signal Processing, 104(1), 47–59. https://doi.org/10.1007/s10470-019-01575-y
  • Pandey, N., & Paul, S. K. (2011). Differential difference current conveyor transconductance amplifier: A new analog building block for signal processing. Journal of Electrical and Computer Engineering, 2011, 1–10. https://doi.org/10.1155/2011/361384
  • Petrović, P. B. (2018). Floating incremental/decremental flux-controlled memristor emulator circuit based on single vdta. Analog Integrated Circuits and Signal Processing, 96(3), 417–433. https://doi.org/10.1007/s10470-018-1177-6
  • Prasad, S. S., Kumar, P., & Ranjan, R. K. (2021). Resistorless memristor emulator using cfta and its experimental verification. IEEE Access, 9, 64065–64075. https://doi.org/10.1109/ACCESS.2021.3075341
  • Raj, N., Ranjan, R. K., & Khateb, F. (2020). Flux-controlled memristor emulator and its experimental results. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 28(4), 1050–1061. https://doi.org/10.1109/TVLSI.2020.2966292
  • Ranjan, R. K., Raj, N., Bhuwal, N., & Khateb, F. (2017). Single dvccta based high frequency incremental/decremental memristor emulator and its application. AEU-International Journal of Electronics and Communications, 82, 177–190. https://doi.org/10.1016/j.aeue.2017.07.039
  • Ranjan, R. K., Rani, N., Pal, R., Paul, S. K., & Kanyal, G. (2017). Single CCTA based high frequency floating and grounded type of incremental/decremental memristor emulator and its application. Microelectronics Journal, 60, 119–128. https://doi.org/10.1016/j.mejo.2016.12.004
  • Ranjan, R. K., Sagar, S., Roushan, S., Kumari, B., Rani, N., & Khateb, F. (2019). High-frequency floating memristor emulator and its experimental results. IET Circuits, Devices & Systems, 13(3), 292–302. https://doi.org/10.1049/iet-cds.2018.5191
  • Ranjan, R. K., Sharma, P. K., Sagar, R. N., Kumari, B., & Khateb, F. (2019). Memristor emulator circuit using multiple-output ota and its experimental results. Journal of Circuits, Systems & Computers, 28(10), 1950166. https://doi.org/10.1142/S0218126619501664
  • Sagar, R. N., Verma, V. K., & Ranjan, R. K. (2022). Electronically tunable flux-controlled resistorless memristor emulator. IEEE Canadian Journal of Electrical and Computer Engineering, 45(3), 311–317. https://doi.org/10.1109/ICJECE.2022.3182711
  • Sharma, V. K., Ansari, M. S., & Parveen, T. (2020). Tunable memristor emulator using off-the-shelf components. Procedia Computer Science, 171, 1064–1073. https://doi.org/10.1016/j.procs.2020.04.114
  • Strukov, D. B., Snider, G. S., Stewart, D. R., & Williams, R. S. (2008). The missing memristor found. Nature, 453(7191), 80–83. https://doi.org/10.1038/nature06932
  • Valov, I., & Kozicki, M. (2017). Organic memristors come of age. Nature Materials, 16(12), 1170–1172. https://doi.org/10.1038/nmat5014
  • Wang, X., & Chen, Y. (2010). Spintronic memristor devices and application Proceedings of the 2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010)(pp. 667–672). IEEE.
  • Yesil, A., Babacan, Y., & Kacar, F. (2020). An electronically controllable, fully floating memristor based on active elements: Do-ota and dvcc. AEU-International Journal of Electronics and Communications, 123, 153315. https://doi.org/10.1016/j.aeue.2020.153315
  • Yeşil, A., Babacan, Y., & Kaçar, F. (2014). A new ddcc based memristor emulator circuit and its applications. Microelectronics Journal, 45(3), 282–287. https://doi.org/10.1016/j.mejo.2014.01.011
  • Yeşil, A., Babacan, Y., & Kaçar, F. (2018). Design and experimental evolution of memristor with only one vdta and one capacitor. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 38(6), 1123–1132. https://doi.org/10.1109/TCAD.2018.2834399

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.