96
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Adaptive continuous twisting control for speed regulation in PMSM

, ORCID Icon, , , &
Received 11 Jun 2023, Accepted 01 Oct 2023, Published online: 14 Nov 2023

References

  • Anayi F. J., & AI Ibraheemi, M. M. A. (2020). Estimation of rotor position for permanent magnet synchronous motor at standstill using sensorless voltage control scheme. IEEE/ASME Transactions on Mechatronics, 25(3), 1612–1621. https://doi.org/10.1109/TMECH.2020.2981193
  • Cai, J., Wen, C., Su, H., Liu, Z., & Xing, L. (2017). Adaptive backstepping control for a class of nonlinear systems with non-triangular structural uncertainties. IEEE Transactions on Automatic Control, 62(10), 5220–5226. https://doi.org/10.1109/TAC.2016.2628159
  • Dendouga, A. (2020). Conventional and second order sliding mode control of permanent magnet synchronous motor fed by direct matrix converter: Comparative study. Energies, 13(19), 5093. https://doi.org/10.3390/en13195093
  • Deng, W., & Yao, J. (2019). Extended-state-observer-based adaptive control of electrohydraulic servomechanisms without velocity measurement. IEEE/ASME Transactions on Mechatronics, 25(3), 1151–1161. https://doi.org/10.1109/TMECH.2019.2959297
  • Ding, S. H., Chen, W. H., Mei, K. Q., & Murray-Smith, D. J. (2020). Disturbance observer design for nonlinear systems represented by input-output models. IEEE Transactions on Industrial Electronics, 67(2), 1222–1232. https://doi.org/10.1109/TIE.2019.2898585
  • Ding, S., Hou, Q., & Wang, H. (2023). Disturbance-observer-based second-order sliding mode controller for speed control of PMSM drives. IEEE Transactions on Energy Conversion, 38(1), 100–110. https://doi.org/10.1109/TEC.2022.3188630
  • Ding, S., Levant, A., & Li, S. (2016). Simple homogeneous sliding-mode controller. Automatica, 67(5), 22–32. https://doi.org/10.1016/j.automatica.2016.01.017
  • Ding, S., Mei, K., & Li, S. (2019). A new second-order sliding mode and its application to nonlinear constrained systems. IEEE Transactions on Automatic Control, 64(6), 2545–2552. https://doi.org/10.1109/TAC.2018.2867163
  • Ding, S., Mei, K., & Yu, X. (2022). Adaptive second-order sliding mode control: A Lyapunov approach. IEEE Transactions on Automatic Control, 67(10), 5392–5399. https://doi.org/10.1109/TAC.2021.3115447
  • Dou, W., Ding, S., & Yu, X. (2023) Event-triggered second-order sliding-mode control of uncertain nonlinear systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, Advance online publication. https://doi.org/10.1109/TSMC.2023.3296681
  • Fan, Y., Zhang, L., Cheng, M., & Chau, K. T. (2015). Deflecting immigration: Networks, markets, and regulation in Los Angeles. IEEE Transactions on Industrial Electronics, 62(5), 3143–3151. https://doi.org/10.1109/TIE.2014.2376879
  • Guo, S., Ren, H., & Li, J. (2017). Robust model-predictive control for a compound active-clamp three-phase soft-switching PFC converter under unbalanced grid condition. IEEE Transactions on Industrial Electronics, 65(3), 2156–2166. https://doi.org/10.1109/TIE.2017.2745474
  • Hao, S., Feng, L., Wu, Z. G., Ju, H. P., & Sreeram, V. (2018). Fuzzy-model-based nonfragile control for nonlinear singularly perturbed systems with semi-markov jump parameters. IEEE Transactions on Fuzzy Systems, 26(6), 3428–3439. https://doi.org/10.1109/TFUZZ.2018.2832614
  • Hou, Q., & Ding, S. (2022a). Finite-time extended state observer based super-twisting sliding mode controller for PMSM drives with inertia identification. IEEE Transactions on Transportation Electrification, 8(2), 1918–1929. https://doi.org/10.1109/TTE.2021.3123646
  • Hou, Q., Ding, S., Yu, X., & Mei, K. (2022b). A super-twisting-like fractional controller for SPMSM drive system. IEEE Transactions on Industrial Electronics, 69(9), 9376–9384. https://doi.org/10.1109/TIE.2021.3116585
  • Huang, J., Li, H., Chen, Y. Q., & Xu, Q. (2012). Robust position control of PMSM using fractional-order sliding mode controller. Abstract and Applied Analysis, 2012(2012), 1–33. https://doi.org/10.1155/2012/512703
  • [Kay Khalil,2002] Kay, H. S., & Khalil, H. K. (2002). Universal controllers with nonlinear integrators. Proceedings of the 2002 American Control Conference, 116–121. https://doi.org/10.1109/ACC.2002.1024790
  • Kim, S.-K., Lee, J.-S., & Lee, K.-B. (2018). Robust speed control algorithm with disturbance observer for uncertain PMSM. International Journal of Electronics, 105, 1300–1318. https://doi.org/10.1080/00207217.2018.1440430
  • Kung, Y. S., & Tsai, M. H. (2007). FPGA-based speed control IC for PMSM drive with adaptive fuzzy control. IEEE Transactions on Power Electronics, 22(6), 2476–2486. https://doi.org/10.1109/TPEL.2007.909185
  • Li, S., Zhou, M., & Yu, X. (2013). Design and implementation of terminal sliding mode control method for PMSM speed regulation system. IEEE Transactions on Industrial Informatics, 9(4), 1879–1891. https://doi.org/10.1109/TII.2012.2226896
  • Li, S., Zong, K., & Liu, H. (2010). A composite speed controller based on a second-order model of permanent magnet synchronous motor system. Transactions of the Instutute of Measurement and Control, 33(5), 522–541. https://doi.org/10.1177/0142331210371814
  • Ma, L., Cheng, C., Guo, J., Shi, B., & Ding, S. (2023a). Direct yawmoment control of electric vehicles based on adaptive sliding mode. Mathematical Biosciences and Engineering, 20(7), 13334–13355. https://doi.org/10.3934/mbe.2023594
  • Ma, L., Mei, K., Ding, S., & Pan, T., (2023b). Design of adaptive fuzzy fixedtime HOSM controller subject to asymmetric output constraints. IEEE Transactions on Fuzzy Systems, Advance online publication. https://doi.org/10.1109/TFUZZ.2023.3241147
  • Mei, K. Q., Ding, S. H., & Chen, C. C. (2022). Fixed-time stabilization for a class of output-constrained nonlinear systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 52(10), 6498–6510. https://doi.org/10.1109/TSMC.2022.3146011
  • Mei, K. Q., Ding, S. H., & Yu, X. H. (2023a). A generalized supertwisting algorithm. IEEE Transactions on Cybernetics, 53(6), 3951–3960. https://doi.org/10.1109/TCYB.2022.3188877
  • Mei, K. Q., Qian, C. J., & Ding, S. H. (2023b). Design of adaptive SOSM controller subject to disturbances with unknown magnitudes. IEEE Transactions on Circuits & Systems I: Regular Papers, 70(5), 2133–2142. https://doi.org/10.1109/TCSI.2023.3241291
  • Nahavandi, R., Asadi, M., & Guerrero, J. M. (2020). First-order integral switching surface sliding-mode control method of active front end rectifier for fast charger applications. IET Power Electronics, 13(17), 3900–3909. https://doi.org/10.1049/iet-pel.2020.0340
  • Negrete, D. Y., & Moreno, J. A. (2014). Adaptive output feedback second order sliding mode control with unknown bound of perturbation. IFAC Proceedings Volumes, 47(3), 10832–10837. https://doi.org/10.3182/20140824-6-ZA-1003.02096
  • Sanchez, T., & Moreno, J. A. (2015). A constructive Lyapunov function design method for a class of homogeneous systems. IEEE Conference on Decision and Control, 5500–5505. https://doi.org/10.1109/CDC.2014.7040249
  • Shtessel, Y., Edwards, C., Fridman, L., & Levant, A. (2014). Sliding mode control and observation. Springer New York.
  • Song, Z., Mei, X., Tao, T., & Xu, M. (2019). The sliding-mode control based on a novel reaching technique for permanent magnet synchronous motors. Electric Power Components and Systems, 47(16–17), 1505–1513. https://doi.org/10.1080/15325008.2019.1663299
  • Song, Z., Yang, J., Mei, X., Tao, T., & Xu, M. (2020). Harmonic current suppression method with adaptive filter for permanent magnet synchronous motor. International Journal of Electronics, 108(6), 983–1013. https://doi.org/10.1080/00207217.2020.1818849
  • Sun, X., Cai, F., Yang, Z., & Tian, X. (2022a). Finite position control of interior permanent magnet synchronous motors at low speed. IEEE Transactions on Power Electronics, 37(7), 7729–7738. https://doi.org/10.1109/TPEL.2022.3146841
  • Sun, X., Zhang, Y., Tian, X., Cao, J., & Zhu, J. (2022b). Speed sensorless control for IPMSMs using a modified MRAS with gray wolf optimization algorithm. IEEE Transactions on Transportation Electrification, 8(1), 1326–1337. https://doi.org/10.1109/TTE.2021.3093580
  • Sun, J., Pu, Z., Ding, S., & Yi, J. (2023). Appointed-time control for flexible hypersonic vehicles with conditional disturbance negation. IEEE Transactions on Aerospace and Electronic Systems, Advance online publication. https://doi.org/10.1109/TAES.2023.3274098
  • Torres-González, V., Sanchez, T., Fridman, L. M., & Moreno, J. A. (2017). Design of continuous twisting algorithm. Automatica, 80, 119–126. https://doi.org/10.1016/j.automatica.2017.02.035
  • Wang, Y. M., Zhang, W. Q., Yang, Y. L., Xue, C., Yuan, S. B., & Zhang, H. Q. (2022). Adaptive second-order sliding mode control of buck converters with multi-disturbances. Energies, 15(14), 5139. https://doi.org/10.3390/en15145139
  • Xing, L., Wen, C., Liu, Z., Su, H., & Cai, J. (2017). Event-triggered adaptive control for a class of uncertain nonlinear systems. IEEE Transactions on Automatic Control, 62(4), 2071–2076. https://doi.org/10.1109/TAC.2016.2594204
  • Xu, W. J. (2012). Permanent magnet synchronous motor with linear quadratic speed controller. Energy Procedia, 14, 364–369. https://doi.org/10.1016/j.egypro.2011.12.943
  • Xu, J., Niu, Y., Lim, C. C., & Shi, P. (2020). Memory output-feedback integral sliding mode control for Furuta pendulum systems. IEEE Transactions on Circuits & Systems I: Regular Papers, 67(6), 2042–2052. https://doi.org/10.1109/TCSI.2020.2970090
  • Yi, P., Wang, X. J., Chen, D. L., & Sun, Z. C. (2022). PMSM current harmonics control technique based on speed adaptive robust control. IEEE Transactions on Transportation Electrification, 8(2), 1794–1806. https://doi.org/10.1109/TTE.2021.3128535
  • [Yu et al.,2022] Yu, Q. G., Wang, W., Feng, Y. N., Tian, W. J., & Shen, Q. (2022). Direct thrust force control of half-open winding primary permanent magnet linear motor. Institute of Electrical and Electronics Engineers Access 10, 59970–59978. https://doi.org/10.1109/ACCESS.2022.3169750
  • Zhang, J., Li, S., & Xiang, Z. (2020). Adaptive fuzzy output feedback event-triggered control for a class of switched nonlinear systems with sensor failures. IEEE Transactions on Circuits & Systems I: Regular Papers, 67(12), 5336–5346. https://doi.org/10.1109/TCSI.2020.2994547

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.