68
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Simultaneous compensation of distorted DC bus and AC side voltage using enhanced virtual synchronous generator in Islanded DC microgrid

& ORCID Icon
Received 16 Apr 2023, Accepted 02 Oct 2023, Published online: 19 Nov 2023

References

  • Ahmadi, M., Sharafi, P., Mousavi, M. H., & Veysi, F. (2021). Power quality improvement in microgrids using statcom under unbalanced voltage conditions. International Journal of Engineering, 34(6), 1455–1467.
  • Alizadeh, G. A., Rahimi, T., Babayi Nozadian, M. H., Padmanaban, S., & Leonowicz, Z. (2019). Improving microgrid frequency regulation based on the virtual inertia concept while considering communication system delay. Energies, 12(10), 2016. https://doi.org/10.3390/en12102016
  • Anitha, D., & Premkumar, K. (2022). DC microgrid: Areview on issues and control. In Smart Grids and Green Energy Systems (pp. 207–229). https://doi.org/10.1002/9781119872061
  • Arani, M. F. M., & El-Saadany, E. F. (2012). Implementing virtual inertia in DFIG-based wind power generation. IEEE Transactions on Power Systems, 28(2), 1373–1384. https://doi.org/10.1109/TPWRS.2012.2207972
  • Bagheri, S., & CheshmehBeigi, H. M. (2021, May). DC microgrid voltage stability through inertia enhancement using a bidirectional DC-DC converter. In 7th Iran Wind Energy Conference (IWEC2021) (pp. 1–5). IEEE.
  • Chen, J., Meng, Z. & Xu, H. (2022). Parameter adaptive control of virtual DC machine based DC microgrid 18th International Conference on AC and DC Power Transmission (ACDC 2022), Online Conference, China (pp. 461–467). https://doi.org/10.1049/icp.2022.1232
  • Ferahtia, S., Djeroui, A., Rezk, H., Chouder, A., Houari, A., & Machmoum, M. (2022). Adaptive droop based control strategy for DC microgrid including multiple batteries energy storage systems. Journal of Energy Storage, 48, 103983. https://doi.org/10.1016/j.est.2022.103983
  • Fu, Y., HUANG, X., XU, Y., & Bai, C. (2018). Controllable inertial control strategy of rotating motor in DC distribution network. Electric Power Automation Equipment, 38(10), 32–38.
  • Golpîra, H., Atarodi, A., Amini, S., Messina, A. R., Francois, B., & Bevrani, H. (2020). Optimal energy storage system-based virtual inertia placement: A frequency stability point of view. IEEE Transactions on Power Systems, 35(6), 4824–4835. https://doi.org/10.1109/TPWRS.2020.3000324
  • Hasan, N. S., Rosmin, N., Nordin, N. M., & Hassan, M. Y. (2019). Virtual inertial support extraction using a super‐capacitor for a wind‐PMSG application. IET Renewable Power Generation, 13(10), 1802–1808. https://doi.org/10.1049/iet-rpg.2018.5655
  • Justo, J. J., Mwasilu, F., Lee, J., & Jung, J. W. (2013). AC-microgrids versus DC-microgrids with distributed energy resources: A review. Renewable and Sustainable Energy Reviews, 24, 387–405. https://doi.org/10.1016/j.rser.2013.03.067
  • Lin, G., Ma, J., Li, Y., Rehtanz, C., Liu, J., Wang, Z., Wang, P., & She, F. (2020). A virtual inertia and damping control to suppress voltage oscillation in islanded DC microgrid. IEEE Transactions on Energy Conversion, 36(3), 1711–1721. https://doi.org/10.1109/TEC.2020.3039364
  • Liu, Y., Zhou, S., Liang, H., Tang, X., Ma, S., & Xie, Y. (2021). Flexible virtual inertial control strategy of photovoltaic-energy storage DC distribution network. Electric Power Automation Equipment, 41, 107–113. https://doi.org/10.16081/j.epae.202105037
  • Li, C., Yang, Y., Dragicevic, T., & Blaabjerg, F. (2021). A new perspective for relating virtual inertia with wideband oscillation of voltage in low-inertia DC microgrid. IEEE Transactions on Industrial Electronics, 69(7), 7029–7039. https://doi.org/10.1109/TIE.2021.3100932
  • Luo, S., Wu, W., Koutroulis, E., Chung, H. S. H., & Blaabjerg, F. (2022). A New unbalanced voltage compensation method based on hopf oscillator for three-phase DC/AC inverters with unbalanced loads. IEEE Transactions on Smart Grid, 13(6), 4245–4255. https://doi.org/10.1109/TSG.2022.3184911
  • Mahajan, S., & Verma, Y. P. (2022). Performance of fast responding ultracapacitor energy storage for virtual inertia emulation control. Energy Storage, 4(5), e346. https://doi.org/10.1002/est2.346
  • Mallemaci, V., Mandrile, F., Rubino, S., Mazza, A., Carpaneto, E., & Bojoi, R. (2021). A comprehensive comparison of virtual synchronous generators with focus on virtual inertia and frequency regulation. Electric Power Systems Research, 201, 107516. https://doi.org/10.1016/j.epsr.2021.107516
  • Mousavi, M. H., & CheshmehBeigi, H. M. (2022, May). A brief review of methods for improving the performance of virtual synchronous generators under unbalnced conditions. In 2022 30th International Conference on Electrical Engineering (ICEE) (pp. 630–635). IEEE.
  • Peng, Q., Yang, Y., Liu, T., & Blaabjerg, F. (2020). Coordination of virtual inertia control and frequency damping in PV systems for optimal frequency support. CPSS Transactions on Power Electronics and Applications, 5(4), 305–316. https://doi.org/10.24295/CPSSTPEA.2020.00025
  • Piri Yengijeh, N., Moradi CheshmehBeigi, H., & Hajizadeh, A. (2022). Inertia emulation with the concept of virtual supercapacitor based on SOC for distributed storage systems in islanded DC microgrid. IET Renewable Power Generation, 16(13), 2805–2815. https://doi.org/10.1049/rpg2.12537
  • Pishbahar, H., Moradi CheshmehBeigi, H., Piri Yengijeh, N., & Bagheri, S. (2021). Inertia emulation with incorporating the concept of virtual compounded DC machine and bidirectional DC–DC converter for DC microgrid in islanded mode. IET Renewable Power Generation, 15(8), 1812–1825. https://doi.org/10.1049/rpg2.12150
  • Poolla, B. K., Groß, D., & Dörfler, F. (2019). Placement and implementation of grid-forming and grid-following virtual inertia and fast frequency response. IEEE Transactions on Power Systems, 34(4), 3035–3046. https://doi.org/10.1109/TPWRS.2019.2892290
  • Rahmani, M., Faghihi, F., Moradi CheshmehBeigi, H., & Hosseini, S. M. (2018). Frequency control of islanded microgrids based on fuzzy cooperative and influence of STATCOM on frequency of microgrids. Journal of Renewable Energy and Environment, 5(4), 27–33.
  • Rakhshani, E., Remon, D., Mir Cantarellas, A., & Rodriguez, P. (2016). Analysis of derivative control based virtual inertia in multi‐area high‐voltage direct current interconnected power systems. IET Generation, Transmission and Distribution, 10(6), 1458–1469. https://doi.org/10.1049/iet-gtd.2015.1110
  • Sahoo, S., Blaabjerg, F., & Dragicevic, T. (2020, September). An adaptive backstepping based virtual inertial control framework for DC microgrids. In 2020 IEEE 11th International Symposium on Power Electronics for Distributed Generation Systems (PEDG) (pp. 85–90). IEEE.
  • Samanta, S., Mishra, J. P., & Roy, B. K. (2018). Virtual DC machine: an inertia emulation and control technique for a bidirectional DC–DC converter in a DC microgrid. IET Electric Power Applications, 12(6), 874–884. https://doi.org/10.1049/iet-epa.2017.0770
  • Saxena, P., Singh, N., & Pandey, A. K. (2020). Enhancing the dynamic performance of microgrid using derivative controlled solar and energy storage based virtual inertia system. Journal of Energy Storage, 31, 101613. https://doi.org/10.1016/j.est.2020.101613
  • Sharon, D., Montano, J. C., Lopez, A., Castilla, M., Borras, D., & Gutiérrez, J. (2008). Power quality factor for networks supplying unbalanced nonlinear loads. IEEE Transactions on Instrumentation and Measurement, 57(6), 1268–1274. https://doi.org/10.1109/TIM.2007.915146
  • Shi, K., Ye, H., Song, W., & Zhou, G. (2018). Virtual inertia control strategy in microgrid based on virtual synchronous generator technology. Institute of Electrical and Electronics Engineers Access, 6, 27949–27957. https://doi.org/10.1109/ACCESS.2018.2839737
  • Unamuno, E., Paniagua, J., & Barrena, J. A. (2019). Unified virtual inertia for AC and DC microgrids: And the role of interlinking converters. IEEE Electrification Magazine, 7(4), 56–68. https://doi.org/10.1109/MELE.2019.2943978
  • Wang, F., Sun, L., Wen, Z., & Zhuo, F. (2022). Overview of inertia enhancement methods in DC system. Energies, 15(18), 6704. https://doi.org/10.3390/en15186704
  • Wang, Z., Yi, H., Jiang, Y., Bai, Y., Zhang, X., Zhuo, F., Wang, F., & Liu, X. (2022). Voltage control and power-shortage mode Switch of PV inverter in the islanded microgrid without other energy sources. IEEE Transactions on Energy Conversion, 37(4), 2826–2836. https://doi.org/10.1109/TEC.2022.3188334
  • Xing, W., Wang, H., Lu, L., Han, X., Sun, K., & Ouyang, M. (2021). An adaptive virtual inertia control strategy for distributed battery energy storage system in microgrids. Energy, 233, 121155. https://doi.org/10.1016/j.energy.2021.121155
  • Yang, L., Hu, Z., Xie, S., Kong, S., & Lin, W. (2019). Adjustable virtual inertia control of supercapacitors in PV-based AC microgrid cluster. Electric Power Systems Research, 173, 71–85. https://doi.org/10.1016/j.epsr.2019.04.011
  • Yengijeh, N. P., CheshmehBeigi, H. M., & Hajizadeh, A. (2021, May). Inertia emulation with the concept of virtual supercapacitor for islanded dc microgrid. In 7th Iran Wind Energy Conference (IWEC2021) (pp. 1–4). IEEE.
  • Zhang, R., Fang, J., & Tang, Y. (2019, May). Inertia emulation through supercapacitor energy storage systems. In 2019 10th International Conference on Power Electronics and ECCE Asia (ICPE 2019-ECCE Asia) (pp. 1365–1370). IEEE.
  • Zhang, X., Li, H., & Fu, Y. (2021, June). Optimized virtual DC machine control for voltage inertia and damping support in DC microgrid. In 2021 IEEE Applied Power Electronics Conference and Exposition (APEC) (pp. 2727–2732). IEEE.
  • Zhang, Y., Sun, Q., Zhou, J., Li, L., Wang, P., & Guerrero, J. M. (2020). Coordinated control of networked AC/DC microgrids with adaptive virtual inertia and governor-gain for stability enhancement. IEEE Transactions on Energy Conversion, 36(1), 95–110. https://doi.org/10.1109/TEC.2020.3011223
  • Zhang, Y., & Wei Li, Y. (2017). Energy Management strategy for supercapacitor in droop-controlled DC microgrid using virtual impedance. IEEE Transactions on Power Electronics, 32(4), 2704–2716. https://doi.org/10.1109/TPEL.2016.2571308
  • Zhang, Q., Zeng, Y., Liu, Y., Zhuang, X., Zhang, H., Hu, W., & Guo, H. (2021). An improved distributed cooperative control strategy for multiple energy storages parallel in islanded DC microgrid. IEEE Journal of Emerging and Selected Topics in Power Electronics, 10(1), 455–468. https://doi.org/10.1109/JESTPE.2021.3072701
  • Zhu, X., Xie, Z., Jing, S., & Ren, H. (2018). Distributed virtual inertia control and stability analysis of dc microgrid. IET Generation, Transmission and Distribution, 12(14), 3477–3486. https://doi.org/10.1049/iet-gtd.2017.1520

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.