54
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Ultra-wideband rectenna with the dual ground plane for wide dynamic input power and load range

, &
Received 30 Apr 2023, Accepted 09 Oct 2023, Published online: 04 Jan 2024

References

  • Bo, S. F., Ou, J. H., Dong, Y., Dong, S. W., & Zhang, X. Y. (2021). All-polarized wideband rectenna with enhanced efficiency within wide input power and load ranges. IEEE Transactions on Industrial Electronics, 69(7), 7470–7480. https://doi.org/10.1109/TIE.2021.3095800
  • Chandravanshi, S., Sarma, S. S., & Akhtar, M. J. (2018). Design of triple band differential rectenna for RF energy harvesting. IEEE Transactions on Antennas and Propagation, 66(6), 2716–2726. https://doi.org/10.1109/TAP.2018.2819699
  • Elwi, T. A., Jassim, D. A., & Mohammed, H. H. (2020). Novel miniaturized folded UWB microstrip antenna‐based metamaterial for RF energy harvesting. International Journal of Communication Systems, 33(6), e4305. https://doi.org/10.1002/dac.4305
  • Fakharian, M. M. (2022). A high gain wideband circularly polarized rectenna with wide ranges of input power and output load. International Journal of Electronics, 109(1), 83–99. https://doi.org/10.1080/00207217.2021.1908617
  • Hagerty, J. A., Helmbrecht, F. B., McCalpin, W. H., Zane, R., & Popovic, Z. B. (2004). Recycling ambient microwave energy with broad-band rectenna arrays. IEEE Transactions on Microwave Theory and Techniques, 52(3), 1014–1024. https://doi.org/10.1109/TMTT.2004.823585
  • Haleem, M., & Elwi, T. A. (2022). Circularly polarized metamaterial patch antenna circuitry for modern applications. International Journal of Emerging Technology & Advanced Engineering, 12(12), 44–50. https://doi.org/10.46338/ijetae1222_05
  • Halimi, M. A., Khan, T., Koul, S. K., & Rengarajan, S. R. (2022). A dual-band rectifier using half-wave transmission line matching for 5G and wi-fi bands RFEH/MPT applications. IEEE Microwave and Wireless Technology Letters, 33(1), 74–77.
  • Halimi, M. A., Shome, P. P., Khan, T., & Rengarajan, S. R. (2023). Efficient single and broadband microwave rectifiers for RFEH/WPT enabled low power 5G sub-6 GHz devices. AEU-International Journal of Electronics and Communications, 165, 154645. https://doi.org/10.1016/j.aeue.2023.154645
  • Keshavarz, R., & Shariati, N. (2021). Highly sensitive and compact quad-band ambient RF energy harvester. IEEE Transactions on Industrial Electronics, 69(4), 3609–3621. https://doi.org/10.1109/TIE.2021.3075888
  • Kumar, M., Kumar, S., & Sharma, A. (2022). Dual-purpose planar radial-array of rectenna sensors for orientation estimation and RF-energy harvesting at IoT nodes. IEEE Microwave and Wireless Components Letters, 32(3), 245–248. https://doi.org/10.1109/LMWC.2022.3145196
  • Liang, Z., & Yuan, J. (2021). A compact dual-band four-port ambient RF energy harvester with high-sensitivity, high-efficiency, and wide power range. IEEE Transactions on Microwave Theory and Techniques, 70(1), 641–649. https://doi.org/10.1109/TMTT.2021.3106310
  • Lu, P., Song, C., & Huang, K. M. (2021). Ultra-wideband rectenna using complementary resonant structure for microwave power transmission and energy harvesting. IEEE Transactions on Microwave Theory and Techniques, 69(7), 3452–3462. https://doi.org/10.1109/TMTT.2021.3067902
  • Lu, P., Yang, X. S., Li, J. L., & Wang, B. Z. (2016). Polarization reconfigurable broadband rectenna with tunable matching network for microwave power transmission. IEEE Transactions on Antennas and Propagation, 64(3), 1136–1141. https://doi.org/10.1109/TAP.2016.2518198
  • Mansour, M. M., & Kanaya, H. (2019). High-efficient broadband CPW RF rectifier for wireless energy harvesting. IEEE Microwave and Wireless Components Letters, 29(4), 288–290. https://doi.org/10.1109/LMWC.2019.2902461
  • Ojha, S. S., Singhal, P. K., Agarwal, A., & Gupta, A. K. (2013). 2-GHz dual diode dipole rectenna for wireless power transmission. International Journal of Microwave and Optical Technology, 8(2) 86–92.
  • Ojha, S. S., Singhal, P. K., & Thakare, V. V. (2022a). Dual-band rectenna system for biomedical wireless applications. Measurement: Sensors, 24, 100532. https://doi.org/10.1016/j.measen.2022.100532
  • Ojha, S. S., Singhal, P. K., & Thakare, V. V. (2022b). Triple-Wideband antenna for RF energy harvesting. In International Conference on Communication, Networks and Computing (pp. 226–237). Springer Nature Switzerland.
  • Ojha, S. S., Singhal, P. K., & Thakare, V. V. (2023). Highly efficient dual diode rectenna with an array for RF energy harvesting. Wireless Personal Communications, 131(4), 1–22. https://doi.org/10.1007/s11277-023-10584-0
  • Ojha, S. S., Tomar, R. S., Akashe, S., Dhakad, B., Mishra, S., & Sharma, M. (2022). Dual-band antenna and low pass filter design for wireless energy harvesting. In International Conference on Communication, Networks and Computing (pp. 238–248). Springer Nature Switzerland.
  • Park, H. S., & Hong, S. K. (2019). Broadband RF-to-DC rectifier with uncomplicated matching network. IEEE Microwave and Wireless Components Letters, 30(1), 43–46. https://doi.org/10.1109/LMWC.2019.2954594
  • Pham, B. L., & Pham, A. V. (2013, June). Triple bands antenna and high efficiency rectifier design for RF energy harvesting at 900, 1900 and 2400 MHz. In 2013 IEEE MTT-S International Microwave Symposium Digest (MTT) (pp. 1–3). IEEE.
  • Roy, S., Tiang, R. J. J., Roslee, M. B., Ahmed, M. T., & Mahmud, M. P. (2021). Quad-band multiport rectenna for RF energy harvesting in ambient environment. Institute of Electrical and Electronics Engineers Access, 9, 77464–77481. https://doi.org/10.1109/ACCESS.2021.3082914
  • Sakaki, H., & Nishikawa, K. (2014, November). Broadband rectifier design based on quality factor of input matching circuit. In 2014 Asia-Pacific Microwave Conference (pp. 1205–1207). IEEE.
  • Shen, S., Chiu, C. Y., & Murch, R. D. (2017a, July). A broadband L-probe microstrip patch rectenna for ambient RF energy harvesting. In 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting (pp. 2037–2038). IEEE.
  • Shen, S., Chiu, C. Y., & Murch, R. D. (2017b). A dual-port triple-band L-probe microstrip patch rectenna for ambient RF energy harvesting. IEEE Antennas and Wireless Propagation Letters, 16, 3071–3074. https://doi.org/10.1109/LAWP.2017.2761397
  • Shen, S., Zhang, Y., Chiu, C. Y., & Murch, R. (2019). A triple-band high-gain multibeam ambient RF energy harvesting system utilizing hybrid combining. IEEE Transactions on Industrial Electronics, 67(11), 9215–9226. https://doi.org/10.1109/TIE.2019.2952819
  • Song, C., Huang, Y., Carter, P., Zhou, J., Yuan, S., Xu, Q., & Kod, M. (2016). A novel six-band dual CP rectenna using improved impedance matching technique for ambient RF energy harvesting. IEEE Transactions on Antennas and Propagation, 64(7), 3160–3171. https://doi.org/10.1109/TAP.2016.2565697
  • Song, C., Huang, Y., Zhou, J., Carter, P., Yuan, S., Xu, Q., & Fei, Z. (2016). Matching network elimination in broadband rectennas for high-efficiency wireless power transfer and energy harvesting. IEEE Transactions on Industrial Electronics, 64(5), 3950–3961. https://doi.org/10.1109/TIE.2016.2645505
  • Song, C., Huang, Y., Zhou, J., Zhang, J., Yuan, S., & Carter, P. (2015). A high-efficiency broadband rectenna for ambient wireless energy harvesting. IEEE Transactions on Antennas and Propagation, 63(8), 3486–3495. https://doi.org/10.1109/TAP.2015.2431719
  • Sun, H., Huang, J., & Wang, Y. (2022). An omnidirectional rectenna array with an enhanced RF power distributing strategy for RF energy harvesting. IEEE Transactions on Antennas and Propagation, 70(6), 4931–4936. https://doi.org/10.1109/TAP.2021.3138542
  • Surender, D., Halimi, A., Khan, T., Talukdar, F. A., & Antar, Y. M. (2023). A triple band rectenna for RF energy harvesting in smart city applications. International Journal of Electronics, 110(5), 789–803. https://doi.org/10.1080/00207217.2022.2062797
  • Tafekirt, H., Pelegri-Sebastia, J., Bouajaj, A., & Reda, B. M. (2020). A sensitive triple-band rectifier for energy harvesting applications. Institute of Electrical and Electronics Engineers Access, 8, 73659–73664. https://doi.org/10.1109/ACCESS.2020.2986797
  • Wei, Y., Duan, J., Jing, H., Lyu, Z., Hao, J., Qu, Z., Wang, J., & Zhang, B. (2022). A multiband, polarization-controlled metasurface absorber for electromagnetic energy harvesting and wireless power transfer. IEEE Transactions on Microwave Theory and Techniques, 70(5), 2861–2871. https://doi.org/10.1109/TMTT.2022.3155718
  • Wu, P., Huang, S. Y., Zhou, W., Yu, W., Liu, Z., Chen, X., & Liu, C. (2018). Compact high-efficiency broadband rectifier with multi-stage-transmission-line matching. IEEE Transactions on Circuits & Systems II: Express Briefs, 66(8), 1316–1320. https://doi.org/10.1109/TCSII.2018.2886432
  • Yang, L., Zhou, Y. J., Zhang, C., Yang, X. M., Yang, X. X., & Tan, C. (2018). Compact multiband wireless energy harvesting based battery-free body area networks sensor for mobile healthcare. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 2(2), 109–115. https://doi.org/10.1109/JERM.2018.2817364
  • Zhang, X. Y., Du, Z. X., & Xue, Q. (2016). High-efficiency broadband rectifier with wide ranges of input power and output load based on branch-line coupler. IEEE Transactions on Circuits & Systems I: Regular Papers, 64(3), 731–739. https://doi.org/10.1109/TCSI.2016.2614331

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.