70
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Design of carbon allotrope FET-based folded cascode operational transconductance amplifiers (FC-OTA)

ORCID Icon, &
Received 08 Dec 2022, Accepted 16 Nov 2023, Published online: 21 Jan 2024

References

  • https://stanford.edu/group/nanoelectronics/model_downloads.Html
  • Ajit, J. S., Kim, Y., & Choi, M. (2010). Performance assessment of analog circuits with carbon nanotube FET (CNFET). In Proceedings of the 20th symposium on Great lakes symposium on VLSI. https://doi.org/10.1145/1785481.1785521
  • Akinwande, D., Yasuda, S., Paul, B., Fujita, S., Close, G., & Wong, H. (2008). Monolithic integration of CMOS VLSI and carbon nanotubes for hybrid nanotechnology applications. IEEE Transactions on Nanotechnology, 7(5), 636–639. https://doi.org/10.1109/tnano.2008.2003438
  • Ali Usmani, F., & Hasan, M. (2010). Carbon nanotube field effect transistors for high performance analog applications: An optimum design approach. Microelectronics Journal, 41(7), 395–402. https://doi.org/10.1016/j.mejo.2010.04.011
  • Amlani, I., Lee, K., Deng, J., & Wong, H. (2009). Measuring frequency response of a single-walled carbon nanotube common-source amplifier. IEEE Transactions on Nanotechnology, 8(2), 226–233. https://doi.org/10.1109/tnano.2008.2010883
  • Appenzeller, J. (2008). Carbon nanotubes for high-performance electronics—progress and prospect. Proceedings of the IEEE, 96(2), 201–211. https://doi.org/10.1109/jproc.2007.911051
  • Baker, R. J. (2008). CMOS: Circuit design, layout, and simulation. John Wiley & Sons.
  • Balijepalli, A., Sinha, S., & Cao, Y. (2007). Compact modeling of carbon nanotube transistor for early stage process-design exploration. In Proceedings of the 2007 international symposium on Low power electronics and design. https://doi.org/10.1145/1283780.1283783
  • Balkanski, M. (2000). Physical properties of carbon nanotubes, edited by R. Saito, G. Dresselhaus and M.S. Dresselhaus, Imperial College press, London, 1998. Materials Science and Engineering: B, 76(3), 241–242. https://doi.org/10.1016/s0921-5107(00)00444-x
  • Cen, M., Song, S., & Cai, C. (2017). A high performance CNFET-based operational transconductance amplifier and its applications. Analog Integrated Circuits and Signal Processing, 91(3), 463–472. https://doi.org/10.1007/s10470-017-0951-1
  • Centurelli, F., Della Sala, R., Monsurrò, P., Scotti, G., & Trifiletti, A. (2021). A novel ota architecture exploiting current gain stages to boost bandwidth and slew-rate. Electronics, 10(14), 1638. Switzerland. https://doi.org/10.3390/electronics10141638
  • Chatterjee, S., Tsividis, Y., & Kinget, P. (2005). 0.5-V analog circuit techniques and their application in OTA and filter design. IEEE Journal of Solid-State Circuits, 40(12), 2373–2387. https://doi.org/10.1109/jssc.2005.856280
  • Chen, Y., Rogachev, A., Sangai, A., Iannaccone, G., Fiori, G., & Chen, D. (2013). A SPICE-compatible model of graphene nano-ribbon field-effect transistors enabling circuit-level delay and power analysis under process variation. In Design, Automation & Test in Europe Conference & Exhibition (DATE). https://doi.org/10.7873/date.2013.359
  • Deng, J., & Wong, H. (2007). Modeling and analysis of planar-gate electrostatic capacitance of 1-D FET with multiple cylindrical conducting channels. IEEE Transactions on Electron Devices, 54(9), 2377–2385. https://doi.org/10.1109/ted.2007.902047
  • Deng, J., & Wong, H. P. (2007a). A compact SPICE model for carbon-nanotube field-effect transistors including nonidealities and its application—part I: Model of the intrinsic channel region. IEEE Transactions on Electron Devices, 54(12), 3186–3194. https://doi.org/10.1109/ted.2007.909030
  • Deng, J., & Wong, H. P. (2007b). A compact SPICE model for carbon-nanotube field-effect transistors including nonidealities and its application—part II: Full device model and circuit performance benchmarking. IEEE Transactions on Electron Devices, 54(12), 3195–3205. https://doi.org/10.1109/ted.2007.909043
  • Gak, J., Miguez, M. R., & Arnaud, A. (2014). Nanopower OTAs with improved linearity and low input offset using bulk degeneration. IEEE Transactions on Circuits & Systems I: Regular Papers, 61(3), 689–698. https://doi.org/10.1109/tcsi.2013.2284002
  • Geiger, R. L., & Sanchez-Sinencio, E. (1985). Active filter design using operational transconductance amplifiers: A tutorial. IEEE Circuits and Devices Magazine, 1(2), 20–32. https://doi.org/10.1109/mcd.1985.6311946
  • Gholipour, M., Chen, Y., Sangai, A., & Chen, D. (2014). Highly accurate SPICE-compatible modeling for single- and double-gate GNRFETs with studies on technology scaling. In Design, Automation & Test in Europe Conference & Exhibition (DATE). https://doi.org/10.7873/date.2014.133
  • Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354(6348), 56–58. https://doi.org/10.1038/354056a0
  • Imran, A., Hasan, M., Islam, A., & Abbasi, S. A. (2012). Optimized design of a 32-nm CNFET-based low-power ultrawideband CCII. IEEE Transactions on Nanotechnology, 11(6), 1100–1109. https://doi.org/10.1109/tnano.2012.2212248
  • Keshavarzi, A., Raychowdhury, A., Kurtin, J., Roy, K., & De, V. (2006). Carbon nanotube field-effect transistors for high-performance digital circuits—transient analysis, parasitics, and scalability. IEEE Transactions on Electron Devices, 53(11), 2718–2726. https://doi.org/10.1109/ted.2006.883813
  • Khateb, F., & Kulej, T. (2018). Design and implementation of a 0.3-V differential difference amplifier. IEEE Transactions on Circuits & Systems I: Regular Papers, 66(2), 513–523. https://doi.org/10.1109/tcsi.2018.2866179
  • Khateb, F., Kulej, T., Kumngern, M., & Psychalinos, C. (2019). A compact power-efficient 0.5 V fully differential difference amplifier. AEU - International Journal of Electronics & Communications, 105, 71–77. https://doi.org/10.1016/j.aeue.2019.04.007
  • Kim, Y. (2011). Integrated circuit design based on carbon nanotube field effect transistor. Transactions on Electrical and Electronic Materials, 12(5), 175–188. https://doi.org/10.4313/teem.2011.12.5.175
  • Kim, H. S., & Cha, H. (2018). A low-noise biopotential CMOS amplifier IC using low-power two-stage OTA for neural recording applications. Journal of Circuits, Systems and Computers, 27(5), 1850068. https://doi.org/10.1142/s0218126618500688
  • Kim, A.-R., Kim, H.-R., Park, Y.-S., Choi, Y.-K., & Kong, B.-S. (2009). Low-power class-AB CMOS OTA with high slew-rate. In 2009 International SoC Design Conference (ISOCC). https://doi.org/10.1109/socdc.2009.5423790
  • Kumari, A., Rani, S., & Singh, B. (2019). Parameterized comparison of nanotransistors based on CNT and GNR materials: Effect of variation in gate oxide thickness and dielectric constant. Journal of Electronic Materials, 48(5), 3078–3085. https://doi.org/10.1007/s11664-019-07062-4
  • Lin, T., Wu, C., & Tsai, M. (2007). A 0.8-V 0.25-mW current-mirror OTA with 160-MHz GBW in 0.18µm CMOS. IEEE Transactions on Circuits & Systems II: Express Briefs, 54(2), 131–135. https://doi.org/10.1109/tcsii.2006.886465
  • Loan, S. A., Nizamuddin, M., Alamoud, A. R., & Abbasi, S. A. (2015). Design and comparative analysis of high performance carbon nanotube-based operational transconductance amplifiers. Nano, 10(3), 1550039. https://doi.org/10.1142/s1793292015500393
  • Loan, S. A., Nizamuddin, M., Shabir, H., Bashir, F., Murshid, A. M., Alamoud, A. R., & Abbasi, S. A. (2014). Carbon nanotube based operational transconductance amplifier: A simulation study. Transactions on Engineering Technologies, 231–242. https://doi.org/10.1007/978-94-017-9588-3_18
  • Mobarak, M., Onabajo, M., Silva-Martinez, J., & Sanchez-Sinencio, E. (2010). Attenuation-predistortion linearization of CMOS OTAs with digital correction of process variations in OTA-C filter applications. IEEE Journal of Solid-State Circuits, 45(2), 351–367. https://doi.org/10.1109/jssc.2009.2037476
  • Nizamuddin, M., Loan, S. A., & Murshid, A. M. (2017). High performance carbon nanotube based folded cascode operational transconductance amplifiers. In 2017 International Conference on Multimedia, Signal Processing and Communication Technologies (IMPACT). https://doi.org/10.1109/mspct.2017.8363968
  • Pankiewicz, B., Wojcikowski, M., Szczepanski, S., & Sun, Y. (2002). A field programmable analog array for CMOS continuous-time OTA-C filter applications. IEEE Journal of Solid-State Circuits, 37(2), 125–136. https://doi.org/10.1109/4.982418
  • Patil, N., Deng, J., Mitra, S., & Wong, H. (2009). Circuit-level performance benchmarking and scalability analysis of carbon nanotube transistor circuits. IEEE Transactions on Nanotechnology, 8(1), 37–45. https://doi.org/10.1109/tnano.2008.2006903
  • Raychowdhury, A., & Roy, K. (2007). Carbon nanotube electronics: Design of high-performance and low-power digital circuits. IEEE Transactions on Circuits & Systems I: Regular Papers, 54(11), 2391–2401. https://doi.org/10.1109/tcsi.2007.907799
  • (1993). A review of: “analysis and design of analog integrated circuits” third edition P.R. Gray & R.G. Meyer, 1993 New York, Chichester, John Wiley and sons ISBN 0 471 599840 £18.95. European Journal of Engineering Education, 18(4), 430–431. https://doi.org/10.1080/0304379930892171
  • Saari, V., Kaltiokallio, M., Lindfors, S., Ryynanen, J., & Halonen, K. (2009). A 240-MHz low-pass filter with variable gain in 65-nm CMOS for a UWB radio receiver. IEEE Transactions on Circuits & Systems I: Regular Papers, 56(7), 1488–1499. https://doi.org/10.1109/tcsi.2008.2006213
  • Soni, S., Niranjan, V., & Kumar, A. (2021). Design of high gain and high bandwidth operational transconductance amplifier (OTA). International Journal of Electronics, 109(5), 774–793. https://doi.org/10.1080/00207217.2021.1941291
  • Stanford University. (2008). CNFET Model website [online]. http://nano.stanford.edu/model.php?Id=23
  • Sun, Y., & Kursun, V. (2011). N-type carbon-nanotube MOSFET device profile optimization for very large scale integration. Transactions on Electrical and Electronic Materials, 12(2), 43–50. https://doi.org/10.4313/teem.2011.12.2.43
  • Tianwang, L., Bo, Y., & Jinguang, J. (2009). A novel fully differential telescopic operational transconductance amplifier. Journal of Semiconductors, 30(8), 085002. https://doi.org/10.1088/1674-4926/30/8/085002
  • Wong, H., Frank, D., Solomon, P., Wann, C., & Welser, J. (1999). Nanoscale CMOS. Proceedings of the IEEE, 87(4), 537–570. https://doi.org/10.1109/5.752515
  • Yasir, M., & Alam, N. (2020). Systematic design of CNTFET based OTA and op amp using gm/ID technique. Analog Integrated Circuits and Signal Processing, 102(2), 293–307. https://doi.org/10.1007/s10470-019-01492-0
  • Yosefi, G. (2019). The high recycling folded cascode (HRFC): A general enhancement of the recycling folded cascode operational amplifier. Microelectronics Journal, 89, 70–90. https://doi.org/10.1016/j.mejo.2019.04.016
  • Zhang, X., & El-Masry, E. I. (2007). A novel CMOS OTA based on body-driven MOSFETs and its applications in OTA-C filters. IEEE Transactions on Circuits & Systems I: Regular Papers, 54(6), 1204–1212. https://doi.org/10.1109/tcsi.2007.897765
  • Zhao, X., Fang, H., Ling, T., & Xu, J. (2015). Transconductance improvement method for low-voltage bulk-driven input stage. Integration, 49, 98–103. https://doi.org/10.1016/j.vlsi.2014.11.005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.