24
Views
0
CrossRef citations to date
0
Altmetric
Research Article

An Optimized Sequence for Sparse Channel Estimation in a 5G MIMO System

&
Received 12 May 2023, Accepted 29 Oct 2023, Published online: 22 Jan 2024

References

  • Al-Salihi, H., Al-Gharbawi, M., & Said, F. (2021, December). Optimal pilot sequence design for machine learning based channel estimation in FDD massive mimo systems. In 2021 ITU Kaleidoscope: Connecting Physical and Virtual Worlds (ITU K), Geneva, Switzerland (pp. 1–5). IEEE.
  • Balevi, E., Doshi, A., & Andrews, J. G. (2020). Massive MIMO channel estimation with an untrained deep neural network. IEEE Transactions on Wireless Communications, 19(3), 2079–2090. https://doi.org/10.1109/TWC.2019.2962474
  • Belgiovine, M., Sankhe, K., Bocanegra, C., Roy, D., & Chowdhury, K. R. (2021). Deep learning at the edge for channel estimation in beyond-5G massive MIMO. IEEE Wireless Communications, 28(2), 19–25. https://doi.org/10.1109/MWC.001.2000322
  • Chawla, A., & Jagannatham, A. K. (2019). Spectral efficiency of very large multiuser MIMO systems for time-selective fading. In 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring), Kuala Lumpur, Malaysia (pp. 1–5).
  • Chitikena, R., & Esther Rani, P. (2023). Deep learning based channel estimation and secure data transmission using IEHO-DLNN and MECC algorithm in mu-MIMO OFDM System. Wireless Personal Communications, 129(4), 2269–2289. https://doi.org/10.1007/s11277-023-10172-2
  • Dash, L., & Thampy, A. S. (2023). Channel estimation using hybrid optimizer based recurrent neural network long short term memory for MIMO communications in 5G network. SN Applied Sciences, 5(2), 60. https://doi.org/10.1007/s42452-022-05253-z
  • Dhiman, G., & Kumar, V. (2019). Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems. Knowledge-Based Systems, 165, 169–196. https://doi.org/10.1016/j.knosys.2018.11.024
  • Ehsanfar, S., Matthé, M., Zhang, D., & Fettweis, G. (2016). A study of pilot-aided channel estimation in MIMO-GFDM systems. In WSA 2016; 20th International ITG Workshop on Smart Antennas, Munich, Germany (pp. 1–8). VDE.
  • Elbir, A. M., & Mishra, K. V. (2019). Joint antenna selection and hybrid beamformer design using unquantized and quantized deep learning networks. IEEE Transactions on Wireless Communications, 19(3), 1677–1688. https://doi.org/10.1109/TWC.2019.2956146
  • Falahati, A., Karami, M. R., & Zargar, B. S. (2016). Removal of the OFDM segment without affecting signalling BER to provide higher data rate as well as a cost efficient time processing or a MIMO-OFDM relay network. IETE Journal of Research, 62(3), 339–346. https://doi.org/10.1080/03772063.2015.1084896
  • Farzamnia, A., Hlaing, N. W., Haldar, M. K., & Rahebi, J. (2017). Channel estimation for sparse channel OFDM systems using least square and minimum mean square error techniques. In 2017 international conference on engineering and technology (ICET), Antalya, Turkey (pp. 1–5). IEEE.
  • Gao, J., Zhong, C., Li, G. Y., & Zhang, Z. (2021). Deep learning-based channel estimation for massive MIMO with hybrid transceivers. IEEE Transactions on Wireless Communications, 21(7), 5162–5174. https://doi.org/10.1109/TWC.2021.3137354
  • Ge, L., Guo, Y., Zhang, Y., Chen, G., Wang, J., Dai, B., Li, M., & Jiang, T. (2021). Deep neural network based channel estimation for massive MIMO-OFDM systems with imperfect channel state information. IEEE Systems Journal, 16(3), 4675–4685. https://doi.org/10.1109/JSYST.2021.3114229
  • Ge, X., Sun, Y., Gharavi, H., & Thompson, J. (2018). Joint optimization of computation and communication power in multi-user massive MIMO systems. IEEE Transactions on Wireless Communications, 17(6), 4051–4063. https://doi.org/10.1109/TWC.2018.2819653
  • Hirose, H., Ohtsuki, T., & Gui, G. (2020). Deep learning-based channel estimation for massive MIMO systems with pilot contamination. IEEE Open Journal of Vehicular Technology, 2, 67–77. https://doi.org/10.1109/OJVT.2020.3045470
  • Huang, Y., He, Y., He, W., Shi, L., Cheng, T., & Sui, Y. (2020). Channel estimation in massive MIMO systems based on generalized block adaptive matching pursuit algorithm. IEEE Wireless Communications Letters, 9(12), 2098–2101. https://doi.org/10.1109/LWC.2020.3013689
  • Jayaram, M., & Anjaneyulu, B. M. (2023, April). Pilot Compression Analysis for Feedback Based Channel Estimation Model in FDD massive MIMO. In 2023 International Conference on Networking and Communications (ICNWC), Chennai, India (pp. 1–6). IEEE.
  • Kim, J., Ahn, Y., Kim, S., & Shim, B. (2022, May). Parametric sparse channel estimation using long short-term memory for mmwave massive mimo systems. In ICC 2022-IEEE International Conference on Communications, Seoul, Republic of Korea (pp. 1397–1402). IEEE.
  • Liu, Q., Li, Y., & Sun, J. (2023). A Model-Driven Channel Estimation Method for Millimeter-Wave Massive MIMO Systems. Sensors, 23(5), 2638. https://doi.org/10.3390/s23052638
  • Liu, Z., Zhang, L., & Ding, Z. (2020). Overcoming the channel estimation barrier in massive MIMO communication via deep learning. IEEE Wireless Communications, 27(5), 104–111. https://doi.org/10.1109/MWC.001.1900413
  • Li, D., Xu, Y., Zhao, M., Zhang, S., & Zhu, J. (2021). Knowledge-driven machine learning-based channel estimation in massive MIMO system. In 2021 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), Nanjing, China (pp. 1–6).
  • Ma, X., Gao, Z., Gao, F., & DiRenzo, M. (2021). Model-driven deep learning based channel estimation and feedback for millimeter-wave massive hybrid MIMO systems. IEEE Journal on Selected Areas in Communications, 39(8), 2388–2406. https://doi.org/10.1109/JSAC.2021.3087269
  • Ma, W., Qi, C., Zhang, Z., & Cheng, J. (2020). Sparse channel estimation and hybrid precoding using deep learning for millimeter wave massive MIMO. IEEE Transactions on Communications, 68(5), 2838–2849. https://doi.org/10.1109/TCOMM.2020.2974457
  • Mashhadi, M. B., & Gündüz, D. (2021). Pruning the pilots: Deep learning-based pilot design and channel estimation for MIMO-OFDM systems. IEEE Transactions on Wireless Communications, 20(10), 6315–6328. https://doi.org/10.1109/TWC.2021.3073309
  • Ma, X., Yang, F., Liu, S., Song, J., & Han, Z. (2017). Design and optimization on training sequence for mmWave communications: A new approach for sparse channel estimation in massive MIMO. IEEE Journal on Selected Areas in Communications, 35(7), 1486–1497. https://doi.org/10.1109/JSAC.2017.2698978
  • Melgar, A., de la Fuente, A., Carro-Calvo, L., Barquero-Pérez, Ó., & Morgado, E. (2022). Deep neural network: An alternative to traditional channel estimators in massive MIMO systems. IEEE Transactions on Cognitive Communications and Networking, 8(2), 657–671. https://doi.org/10.1109/TCCN.2022.3164888
  • Mohades, Z., & Vakili, V. T. (2021). Deep Neural Network for Compressive Sensing and Application to massive MIMO channel estimation. Circuits, Systems, and Signal Processing, 40(9), 1–16. https://doi.org/10.1007/s00034-021-01675-z
  • Nair, A. K., & Menon, V. (2022, January). Joint channel estimation and symbol detection in MIMO-OFDM systems: A deep learning approach using Bi-LSTM. In 2022 14th International Conference on Communication Systems & Networks (COMSNETS), Bangalore, India (pp. 406–411). IEEE.
  • Özdogan, Ö., Björnson, E., & Zhang, J. (2019). Performance of cell-free massive MIMO with rician fading and phase shifts. IEEE Transactions on Wireless Communications, 18(11), 5299–5315. https://doi.org/10.1109/TWC.2019.2935434
  • Pasangi, P., Atashbar, M., & Feghhi, M. M. (2020). Blind downlink channel estimation of multi-user multi-cell massive MIMO system in presence of the pilot contamination. AEU-International Journal of Electronics and Communications, 117, 153099. https://doi.org/10.1016/j.aeue.2020.153099
  • Ravikumar, C. V. (2023). Developing novel channel estimation and hybrid precoding in millimeter-wave communication system using heuristic-based deep learning. Energy, 268, 126600. https://doi.org/10.1016/j.energy.2022.126600
  • Reddy, G. N., Ravikumar, C. V., & Rajesh, A. (2022). Literature review and research direction towards channel estimation and hybrid pre-coding in mmWave massive MIMO communication systems. Journal of Reliable Intelligent Environments, 9(2), 1–20. https://doi.org/10.1007/s40860-022-00174-5
  • Riadi, A., Boulouird, M., & Hassani, M. M. R. (2019, April). ZF/MMSE and OSIC detectors for uplink OFDM massive MIMO systems. In 2019 IEEE jordan international joint conference on electrical engineering and information technology (JEEIT), Amman, Jordan (pp. 767–772).
  • Sadraei, M. H., Fazel, M. S., & Doost‐Hoseini, A. M. (2020). Ergodic spectral efficiency of massive MIMO with correlated Rician channel and MRC detection based on LS and MMSE channel estimation. IET Communications, 14(17), 2962–2971. https://doi.org/10.1049/iet-com.2019.0905
  • Sohrabi, F., Attiah, K. M., & Yu, W. (2021). Deep learning for distributed channel feedback and multiuser precoding in FDD massive MIMO. IEEE Transactions on Wireless Communications, 20(7), 4044–4057. https://doi.org/10.1109/TWC.2021.3055202
  • Sun, B., Zhou, Y., Yuan, J., & Shi, J. (2020). Interference cancellation based channel estimation for massive MIMO systems with time shifted pilots. IEEE Transactions on Wireless Communications, 19(10), 6826–6843. https://doi.org/10.1109/TWC.2020.3006208
  • Tang, R., Qi, C., & Zhang, P. (2023, June). Block Sparse Channel Estimation based on residual difference and deep learning for wideband MmWave massive MIMO. In 2023 IEEE 97th Vehicular Technology Conference (VTC2023-Spring), Florence, Italy (pp. 1–6).
  • Unnisa, N., & Tatineni, M. (2022). Adaptive deep learning strategy with red deer algorithm for sparse channel estimation and hybrid precoding in millimeter wave massive MIMO-OFDM systems. Wireless Personal Communications, 122(4), 3019–3051. https://doi.org/10.1007/s11277-021-09039-1
  • Wei, X., Hu, C., & Dai, L. (2020). Deep learning for beamspace channel estimation in millimeter-wave massive MIMO systems. IEEE Transactions on Communications, 69(1), 182–193. https://doi.org/10.1109/TCOMM.2020.3027027
  • Wen, C. K., Shih, W. T., & Jin, S. (2018). Deep learning for massive MIMO CSI feedback. IEEE Wireless Communications Letters, 7(5), 748–751. https://doi.org/10.1109/LWC.2018.2818160
  • Yuan, X., Qi, S., & Wang, Y. (2020). Stacked enhanced auto-encoder for data-driven soft sensing of quality variable. IEEE Transactions on Instrumentation and Measurement, 69(10), 7953–7961. https://doi.org/10.1109/TIM.2020.2985614
  • Zhang, Y., Alrabeiah, M., & Alkhateeb, A. (2020). Deep learning for massive MIMO with 1-bit ADCs: When more antennas need fewer pilots. IEEE Wireless Communications Letters, 9(8), 1273–1277. https://doi.org/10.1109/LWC.2020.2987893
  • Zhao, J., Wu, Y., Zhang, Q., & Liao, J. (2023). Two-stage channel estimation for mmwave massive mimo systems based on resnet-unet. IEEE Systems Journal, 17(3), 4291–4300. https://doi.org/10.1109/JSYST.2023.3234048
  • Zheng, X., & Lau, V. K. (2021). Online deep neural networks for mmWave massive MIMO channel estimation with arbitrary array geometry. IEEE Transactions on Signal Processing, 69, 2010–2025. https://doi.org/10.1109/TSP.2021.3068568
  • Zia, M. U., Xiang, W., Vitetta, G. M., & Huang, T. (2022). Deep learning for Parametric Channel Estimation in massive MIMO systems. IEEE Transactions on Vehicular Technology, 72(4), 4157–4167. https://doi.org/10.1109/TVT.2022.3223896

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.