45
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A 28 GHz transformer-based Doherty power amplifier for FR2 5G applications in 40 nm CMOS

ORCID Icon &
Received 02 Apr 2023, Accepted 03 Jan 2024, Published online: 05 Feb 2024

References

  • Ali, S. N., Agarwal, P., Baylon, J., Gopal, S., Renaud, L., & Heo, D. (2018). A 28GHz 41%-PAE linear CMOS power amplifier using a transformer-based AM-PM distortion-correction technique for 5G phased arrays, 2018 IEEE International Solid - State Circuits Conference-(ISSCC) (pp. 406–408).
  • Ali, S. N., Agarwal, P., Renaud, L., Molavi, R., Mirabbasi, S., Pande, P. P., & Heo, D. (2018). A 40% PAE frequency-reconfigurable CMOS power amplifier with tunable gate–drain neutralization for 28-GHz 5G radios. IEEE Transactions on Microwave Theory and Techniques, 66(5), 2231–2245. https://doi.org/10.1109/TMTT.2018.2801806
  • Chappidi, C. R., Sharma, T., Liu, Z., & Sengupta, K. (2020). Load modulated balanced mm-wave CMOS PA with integrated linearity enhancement for 5G applications. 2020 IEEE/MTT-S International Microwave Symposium (IMS) (pp. 1101–1104).
  • Chen, Y. C., Lin, Y. H., Lin, J. L., & Wang, H. (2018). A Ka-band transformer-based doherty power amplifier for multi-Gb/s application in 90-nm CMOS. IEEE Microwave and Wireless Components Letters, 28(12), 1134–1136. https://doi.org/10.1109/LMWC.2018.2878133
  • Fang, X., Xia, J., & Boumaiza, S. (2020). A 28-GHz beamforming doherty power amplifier with enhanced AM-PM characteristic. IEEE Transactions on Microwave Theory and Techniques, 68(7), 3017–3027. https://doi.org/10.1109/TMTT.2020.2968318
  • Indirayanti, P., & Reynaert, P. (2017). A 32 GHz 20 dBm-PSAT transformer-based doherty power amplifier for multi-Gb/s 5G applications in 28 nm bulk CMOS. 2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC) (pp. 45–48). https://doi.org/10.1109/RFIC.2017.7969013
  • Jain Nitin, & A.U.A.N. (2019). Commercializing 5G mmWave Arrays, 2019 IEEE MTT-S International Microwave Symposium, 1–26.
  • Jia, H., Chi, B., Kuang, L., & Wang, Z. (2013). A self-healing mm-wave amplifier using digital controlled artificial dielectric transmission lines. 2013 IEEE Asian Solid-State Circuits Conference (A-SSCC), Singapore, 425–428.
  • Kaymaksut, E., & Reynaert, P. (2012). Transformer-based uneven doherty power amplifier in 90 nm CMOS for WLAN applications. IEEE Journal of Solid-State Circuits, 47(7), 1659–1671. https://doi.org/10.1109/JSSC.2012.2191334
  • Kulkarni, S., & Reynaert, P. (2016). A 60-GHz power amplifier with AM–PM distortion cancellation in 40-nm CMOS. IEEE Transactions on Microwave Theory and Techniques, 64(7), 2284–2291. https://doi.org/10.1109/TMTT.2016.2574866
  • Park, H. C., Kim, S., Lee, J., Jung, J., Baek, S., Kim, T., Kang, D., Minn, D., & Yang, S. G. (2022). Single transformer-based compact doherty power amplifiers for 5G RF phased-array ICs. IEEE Journal of Solid-State Circuits, 57(5), 1267–1279. https://doi.org/10.1109/JSSC.2022.3148044
  • Pashaeifar, M., de Vreede, L. C. N., & Alavi, M. S. (2021). A millimeter-wave mutual-coupling-resilient double-quadrature transmitter for 5G applications. IEEE Journal of Solid-State Circuits, 56(12), 3784–3798. https://doi.org/10.1109/JSSC.2021.3111126
  • Qunaj, V., & Reynaert, P. (2021). 26.2 a doherty-like load-modulated balanced power amplifier achieving 15.5dBm average pout and 20% Average PAE at a Data Rate of 18Gb/s in 28nm CMOS, 2021 IEEE International Solid- State Circuits Conference (ISSCC), 64, 356–358.
  • Vigilante, M., & Reynaert, P. (2018). A wideband class-AB power amplifier with 29–57-GHz AM–PM compensation in 0.9-V 28-nm bulk CMOS. IEEE Journal of Solid-State Circuits, 53(5), 1288–1301. https://doi.org/10.1109/JSSC.2017.2778275
  • Wang, F., & Wang, H. (2020). 24.1 a 24-to-30GHz watt-level broadband linear doherty power amplifier with multi-primary distributed-active-transformer power-combining supporting 5G NR FR2 64-QAM with >19dBm average pout and >19% average PAE. 2020 IEEE International Solid- State Circuits Conference-(ISSCC), San Francisco (pp. 362–364).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.