67
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Hybrid approach for 3 phase bridgeless AC to DC Cuk converter for WECS

, &
Received 29 Apr 2023, Accepted 26 Jan 2024, Published online: 21 Feb 2024

References

  • Adapa, A. K., Bhowmick, S., & John, V. (2020). Low-frequency DC-link capacitor current mitigation in reduced switch count single-phase to three-phase converter. IEEE Transactions on Industrial Electronics, 68(4), 3058–3068. https://doi.org/10.1109/TIE.2020.2977543
  • Alsmadi, Y., Chairez, I., & Utkin, V. (2020). Direct sliding mode control of a three-phase AC/DC power converter for the velocity regulation of a DC motor. IFAC-Papersonline, 53(2), 13359–13364. https://doi.org/10.1016/j.ifacol.2020.12.171
  • Alvarez-Diazcomas, A., Rodríguez-Reséndiz, J., Carrillo-Serrano, R. V., Estévez-Bén, A. A., & Álvarez-Alvarado, J. M. (2023). A critical comparison of the Cuk and the Sheppard–Taylor Converter. World Electric Vehicle Journal, 14(6), 148. https://doi.org/10.3390/wevj14060148
  • Aviles, M., Rodríguez-Reséndiz, J., & Ibrahimi, D. (2023). Optimizing EMG classification through metaheuristic algorithms. Technologies, 11(4), 87. https://doi.org/10.3390/technologies11040087
  • Bhalachandra, D. J., Patil, D. S., Pukkunnen, E. B., & Devadas, L. (2021). Permanent Magnet Synchronous Generator Based Wind Energy Conversion System With Power Management System Using V/F Technique. International Journal of Aquatic Science, 12(2), 2372–2382.
  • Bharathidasan, M., & Indragandhi, V. (2022). Implementation of radial basis function network-based maximum power point tracking for a PV-fed high step-up converter. Frontiers in Energy Research, 10, 915730. https://doi.org/10.3389/fenrg.2022.915730
  • Eldho, R. P., Ragasudha, C. P., & Chhabra, A. (2021, February). Overview on second & third order resonant switch mode power converter for variable input voltage applications. In IOP Conference Series: Materials Science and Engineering (Vol. 1091, p. 012074). IOP Publishing.
  • Gangavarapu, S., & Rathore, A. K. (2020). A three-phase single-sensor-based cuk-derived pfc converter with reduced number of components for more electric aircraft. IEEE Transactions on Transportation Electrification, 6(4), 1767–1779. https://doi.org/10.1109/TTE.2020.2988154
  • Ghoushchi, S. J., Manjili, S., Mardani, A., & Saraji, M. K. (2021). An extended new approach for forecasting short-term wind power using modified fuzzy wavelet neural network: A case study in wind power plant. Energy, 223, 120052. https://doi.org/10.1016/j.energy.2021.120052
  • Gomes, R. C. M., Vitorino, M. A., Acevedo-Bueno, D. A., & de Rossiter Corrêa, M. B. (2021). Three-phase AC–AC converter with diode rectifier for induction heating application with improved input current quality and coil modeling. IEEE Transactions on Industry Applications, 57(3), 2673–2681. https://doi.org/10.1109/TIA.2021.3065629
  • Haque, M. M. (2022). Improved Power Electronics Topology for Premises Energy Management Systems ( Doctoral dissertation, CQUniversity).
  • Khodabandeh, M., Lehman, B., & Amirabadi, M. (2021). A highly reliable single-phase AC to three-phase AC converter with a small link capacitor. IEEE Transactions on Power Electronics, 36(9), 10051–10064. https://doi.org/10.1109/TPEL.2021.3066621
  • Palani, A., Mahendran, V., Vengadakrishnan, K., Muthusamy, S., Mishra, O. P., Ramamoorthi, P., Sadasivuni, K. K., & Sadasivuni, K. K. (2023). A novel design and development of multilevel inverters for parallel operated PMSG-Based standalone wind energy conversion systems. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 1–11. https://doi.org/10.1007/s40998-023-00661-2
  • Rathore, K. S., Kalla, U. K., Palwalia, D. K., Singh, B., & Mishra, A. K. (2020). Voltage‐controlled power factor corrected CSC derived DC–DC converter for PMBLDC driven home appliances. IET Power Electronics, 13(15), 3407–3418. https://doi.org/10.1049/iet-pel.2020.0004
  • Rodríguez-Abreo, O., Rodríguez-Reséndiz, J., Álvarez-Alvarado, J. M., & García-Cerezo, A. (2022). Metaheuristic parameter identification of motors using dynamic response relations. Sensors, 22(11), 4050. https://doi.org/10.3390/s22114050
  • Rodríguez-Abreo, O., Rodríguez-Reséndiz, J., Montoya-Santiyanes, L. A., & Álvarez-Alvarado, J. M. (2021). Non-linear regression models with vibration amplitude optimization algorithms in a microturbine. Sensors, 22(1), 130. https://doi.org/10.3390/s22010130
  • Rodríguez-Abreo, O., Rodríguez-Reséndiz, J., Velásquez, F. A. C., Ortiz Verdin, A. A., Garcia-Guendulain, J. M., & Garduño-Aparicio, M. (2021). Estimation of transfer function coefficients for second-order systems via metaheuristic algorithms. Sensors, 21(13), 4529. https://doi.org/10.3390/s21134529
  • Sabir, B., Lu, S. D., Liu, H. D., Lin, C. H., Sarwar, A., & Huang, L. Y. (2023). A novel isolated intelligent adjustable buck-boost converter with hill climbing MPPT algorithm for solar power systems. Processes, 11(4), 1010. https://doi.org/10.3390/pr11041010
  • Sabzali, A. J., Ismail, E. H., Al-Saffar, M. A., & Fardoun, A. A. (2011). New bridgeless DCM sepic and cuk PFC rectifiers with low conduction and switching losses. IEEE Transactions on Industry Applications, 47(2), 873–881. https://doi.org/10.1109/TIA.2010.2102996
  • Sahoo, B., Routray, S. K., & Rout, P. K. (2019). Repetitive control and cascaded multilevel inverter with integrated hybrid active filter capability for wind energy conversion system. Engineering Science and Technology, an International Journal, 22(3), 811–826. https://doi.org/10.1016/j.jestch.2019.01.001
  • Salem, M., Ramachandaramurthy, V. K., Jusoh, A., Padmanaban, S., Kamarol, M., Teh, J., & Ishak, D. (2020). Three-phase series resonant DC-DC boost converter with double LLC resonant tanks and variable frequency control. Institute of Electrical and Electronics Engineers Access, 8, 22386–22399. https://doi.org/10.1109/ACCESS.2020.2969546
  • Shukla, U., Yadav, S., Tiwari, N., & Priyadarshini, A. (2023). Optimisation of PI controller for design and modelling of Cuk, forward, and SEPIC converter. International Journal of Power Electronics, 18(2), 201–234. https://doi.org/10.1504/IJPELEC.2023.132978
  • Singh, K. A., Chaudhary, A., & Chaudhary, K. (2022). Three-phase AC-DC converter for Direct-drive PMSG-based Wind Energy Conversion System. Journal of Modern Power Systems and Clean Energy, 11(2), 589–598. https://doi.org/10.35833/MPCE.2022.000060
  • Sudhakar, A. V. V., Manjusree, Y., & Teja, M. S. (2020, December). Performance enhancement of EV charger with Cuk converter and ABC algorithm. In IOP Conference Series: Materials Science and Engineering (Vol. 981, p. 042053). IOP Publishing.
  • Sutikno, T., Purnama, H. S., Aprilianto, R. A., Jusoh, A., Widodo, N. S., & Santosa, B. (2022). Modernisation of DC-DC converter topologies for solar energy harvesting applications: A review. Indonesian Journal of Electrical Engineering and Computer Science, 28(3), 1845. https://doi.org/10.11591/ijeecs.v28.i3.pp1845-1872
  • Udayakumar, M. D., Devi, A. S., Raja, E., Ali, A. N., & Stonier, A. A. (2021, February). Augmentation of low voltage ride through (LVRT) capability using ANN based electric spring for a grid-tied wind energy conversion system. In IOP conference series: materials science and engineering (Vol. 1055, p. 012156). IOP Publishing.
  • Vasudevan, K., Kumar, D., Tutorial, I. I., Williamson, S. S., Tutorial, A., III, Srivastava, A. K., Contd, T. I., Enjeti, P., Tutorial, N. I. B., & Kamalasadan, S. (2020). In IEEE International conference on Power Electronics, Smart Grid and Renewable Energy (PESGRE 2020).
  • Vengadachalam, N., Karthigaivel, R., & Seethalakshmi, V. S. (2020). Intrinsic Power Management Strategy based improvement of power stability in a single-phase AC–DC converter system. Microprocessors and Microsystems, 73, 102995. https://doi.org/10.1016/j.micpro.2020.102995
  • Villegas-Mier, C. G., Rodriguez-Resendiz, J., Álvarez-Alvarado, J. M., Rodriguez-Resendiz, H., Herrera-Navarro, A. M., & Rodríguez-Abreo, O. (2021). Artificial neural networks in MPPT algorithms for optimization of photovoltaic power systems: A review. Micromachines, 12(10), 1260. https://doi.org/10.3390/mi12101260
  • Villuendas-Rey, Y., Velázquez-Rodríguez, J. L., Alanis-Tamez, M. D., Moreno-Ibarra, M. A., & Yáñez-Márquez, C. (2021). Mexican axolotl optimization: A novel bioinspired heuristic. Mathematics, 9(7), 781. https://doi.org/10.3390/math9070781
  • Zhan, J., Zhou, Y., Zhu, X., & Lin, H. (2023, November). Research on maximum power point tracking of PV systems based on perturbation and observation method. In International Conference on Electronic Materials and Information Engineering (EMIE 2023) (Vol. 12919, pp. 182–188). SPIE.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.