73
Views
1
CrossRef citations to date
0
Altmetric
Research Article

An energy-efficient design of ternary SRAM using GNRFETs

ORCID Icon, ORCID Icon & ORCID Icon
Received 30 May 2023, Accepted 13 Jan 2024, Published online: 05 Feb 2024

References

  • Abbasian, E. (2022). A highly stable low-energy 10T SRAM for Near-Threshold Operation. IEEE transactions on circuits and systems—i: regular papers (pp. 1–11).
  • Abbasian, E., & Gholipour, M. (2020). A variation-aware design for storage cells using schottky-barrier-type GNRFETs. Journal of Computational Electronics, 19(3), 987–1001. https://doi.org/10.1007/s10825-020-01529-y
  • Abbasian, E., Gholipour, M., & Izadinasab, F. (2021). Performance evaluation of GNRFET and TMDFET devices in static random access memory cells design. International Journal of Circuit Theory and Applications, 49(11), 3630–3652. https://doi.org/10.1002/cta.3108
  • Abiri, E., & Darabi, A. (2016). A novel design of low power and high read stability ternary SRAM (T-SRAM), memory based on the modified gate diffusion input (m-GDI) method in nanotechnology. Microelectronics Journal, 58, 44–59. https://doi.org/10.1016/j.mejo.2016.10.009
  • Aljaam, J. M., Jaber, R. A., & Al-Maadeed, S. A. (2021). Novel ternary adder and multiplier designs without using decoders or encoders. Institute of Electrical and Electronics Engineers Access, 9, 56726–56735. https://doi.org/10.1109/ACCESS.2021.3072567
  • Basha, S. J., & Venkatramana, P. (2023). Design of ternary logic circuits using GNRFET and RRAM. Circuits, Systems, and Signal Processing, 42(12), 1–22. https://doi.org/10.1007/s00034-023-02445-9
  • Chen, Z., Lin, Y.-M., Rooks, M. J., & Avouris, P. (2007). Graphene nano-ribbon electronics. Physica E: Low-Dimensional Systems and Nanostructures, 40(2), 228–232. https://doi.org/10.1016/j.physe.2007.06.020
  • Chen, Y.-Y., Sangai, A., Rogachev, A., Gholipour, M., Iannaccone, G., Fiori, G., & Chen, D. (2015). A SPICE-compatible model of MOS-type graphene nano-ribbon field-effect transistors enabling gate-and circuit-level delay and power analysis under process variation. IEEE Transactions on Nanotechnology, 14(6), 1068–1082. https://doi.org/10.1109/TNANO.2015.2469647
  • Cho, G., & Lombardi, F. (2016). Design and process variation analysis of CNTFET-based ternary memory cells. Integration, 54, 97–108. https://doi.org/10.1016/j.vlsi.2016.02.003
  • Gholipour, M., Chen, Y.-Y., Sangai, A., Masoumi, N., & Chen, D. (2015). Analytical SPICE-compatible model of schottky-barrier-type GNRFETs with performance analysis. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 24(2), 650–663. https://doi.org/10.1109/TVLSI.2015.2406734
  • Hayes, B. (2001). Third base. American Scientist, 89(6), 490–494. https://doi.org/10.1511/2001.40.490
  • Hosseini, S. A., & Etezadi, S. (2020). Low storage power and high noise margin ternary memory cells in nanoelectronics. IET Circuits, Devices & Systems, 14(7), 929–941. https://doi.org/10.1049/iet-cds.2019.0432
  • Jaber, R. A., Aljaam, J. M., Owaydat, B. N., Al-Maadeed, S. A., Kassem, A., & Haidar, A. M. (2021). Ultra-Low Energy CNFET-Based ternary combinational circuits designs. Institute of Electrical and Electronics Engineers Access, 9, 115951–115961. https://doi.org/10.1109/ACCESS.2021.3105577
  • Jooq, M. K. Q., Moaiyeri, M. H., & Tamersit, K. (2022). A new design paradigm for auto-nonvolatile ternary SRAMs using ferroelectric CNTFETs: From device to array architecture. IEEE Transactions on Electron Devices, 69(11), 6113–6120. https://doi.org/10.1109/TED.2022.3207703
  • Kumar, M., & Ubhi, J. S. (2019). Design and analysis of CNTFET based 10T SRAM for high performance at nanoscale. International Journal of Circuit Theory and Applications, 47(11), 1775–1785. https://doi.org/10.1002/cta.2696
  • Limachia, M., Thakker, R., & Kothari, N. (2018). A near-threshold 10t differential sram cell with high read and write margins for tri-gated finfet technology. Integration, 61, 125–137. https://doi.org/10.1016/j.vlsi.2017.11.009
  • Lin, S., Kim, Y.-B., & Lombardi, F. (2009). CNTFET-based design of ternary logic gates and arithmetic circuits. IEEE Transactions on Nanotechnology, 10(2), 217–225. https://doi.org/10.1109/TNANO.2009.2036845
  • Lin, S., Kim, Y.-B., & Lombardi, F. (2012). Design of a ternary memory cell using CNTFETs. IEEE Transactions on Nanotechnology, 11(5), 1019–1025. https://doi.org/10.1109/TNANO.2012.2211614
  • Li, X., Wang, X., Zhang, L., Lee, S., & Dai, H. (2008). Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science, 319(5867), 1229–1232. https://doi.org/10.1126/science.1150878
  • Mani, E., Sharma, K., & Sachdeva, A. (2023). Characterisation of Graphene Nano-Ribbon Field Effect Transistor and design of high performance PPN 12 T GNRFET full adder. Physica Scripta, 98(12), 125022. https://doi.org/10.1088/1402-4896/ad094d
  • Nayeri, M., Keshavarzian, P., & Nayeri, M. (2019a). Approach for MVL design based on armchair graphene nanoribbon field effect transistor and arithmetic circuits design. Microelectronics Journal, 92, 104599. https://doi.org/10.1016/j.mejo.2019.07.017
  • Nayeri, M., Keshavarzian, P., & Nayeri, M. (2019b). High-speed penternary inverter gate using GNRFET. Journal of Advances in Computer Research, 10(2), 53–59.
  • Samadi, H., Shahhoseini, A., & Aghaei-Liavali, F. (2017). A new method on designing and simulating CNTFET_based ternary gates and arithmetic circuits. Microelectronics Journal, 63, 41–48. https://doi.org/10.1016/j.mejo.2017.02.018
  • Sardroudi, F. M., Habibi, M., & Moaiyeri, M. H. (2021). A low-power dynamic ternary full adder using carbon nanotube field-effect transistors. AEU-International Journal of Electronics and Communications, 131, 153600. https://doi.org/10.1016/j.aeue.2020.153600
  • Sharma, T., & Kumre, L. (2020). Energy-efficient ternary arithmetic logic unit design in CNTFET technology. Circuits, Systems, and Signal Processing, 39(7), 3265–3288. https://doi.org/10.1007/s00034-019-01318-4
  • Sharma, T., & Kumre, L. (2021). Design of unbalanced ternary counters using shifting literals based D-Flip-flops in carbon nanotube technology. Computers & Electrical Engineering, 93, 107249. https://doi.org/10.1016/j.compeleceng.2021.107249
  • Shrivastava, Y., & Gupta, T. K. (2021). Design of high-speed low variation static noise margin ternary S-RAM cells. IEEE Transactions on Device and Materials Reliability, 21(1), 102–110. https://doi.org/10.1109/TDMR.2021.3058159
  • Srinivasu, B., & Sridharan, K. (2021). Low-power and high-performance ternary SRAM designs with application to CNTFET technology. IEEE Transactions on Nanotechnology, 20, 562–566. https://doi.org/10.1109/TNANO.2021.3096123
  • Stanford University CNFET model Websitee. Stanford University, S., CA [Online]; (2008). http://nano.stanford.edu/model.php?Id=23
  • Tabrizchi, S., Sharifi, F., & Dehghani, P. (2021). Energy-efficient and PVT-tolerant CNFET-based ternary full adder cell. Circuits, Systems, and Signal Processing, 40(7), 3523–3535. https://doi.org/10.1007/s00034-020-01638-w
  • Takbiri, M., Navi, K., & Mirzaee, R. F. (2022). Systematic transistor sizing of a CNFET-Based ternary inverter for high performance and noise margin enlargement. Institute of Electrical and Electronics Engineers Access, 10, 10553–10565. https://doi.org/10.1109/ACCESS.2022.3144981
  • Vidhyadharan, A. S., & Vidhyadharan, S. (2021). A novel ultra-low-power CNTFET and 45 nm CMOS based ternary SRAM. Microelectronics Journal, 111, 105033. https://doi.org/10.1016/j.mejo.2021.105033
  • Wang, X., & Dai, H. (2010). Etching and narrowing of graphene from the edges. Nature Chemistry, 2(8), 661–665. https://doi.org/10.1038/nchem.719
  • You, K., & Nepal, K. (2011). Design of a ternary static memory cell using carbon nanotube-based transistors. Micro & Nano Letters, 6(6), 381–385. https://doi.org/10.1049/mnl.2011.0168
  • Zarandi, A. D., Reshadinezhad, M. R., & Rubio, A. (2020). A systematic method to design efficient ternary high performance CNTFET-based logic cells. Institute of Electrical and Electronics Engineers Access, 8, 58585–58593. https://doi.org/10.1109/ACCESS.2020.2982738

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.