44
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Data transmission via hybrid fuzzy time slot scheduling in long-range communication

&
Received 21 Jun 2023, Accepted 02 Jan 2024, Published online: 05 Feb 2024

References

  • Abdelfadeel, K. Q., Zorbas, D., Cionca, V., & Pesch, D. (2019). $ FREE $—fine-grained scheduling for reliable and energy-efficient data collection in LoRaWAN. IEEE Internet of Things Journal, 7(1), 669–683. https://doi.org/10.1109/JIOT.2019.2949918
  • Abdulzahra, A. M. K., & Al-Qurabat, A. K. M. (2022). A clustering approach based on fuzzy C-means in wireless sensor networks for IoT applications. Karbala International Journal of Modern Science, 8(4), 579–595. https://doi.org/10.33640/2405-609X.3259
  • Alenezi, M., Chai, K. K., Alam, A. S., Chen, Y., & Jimaa, S. (2020). Unsupervised learning clustering and dynamic transmission scheduling for efficient dense LoRaWAN networks. Institute of Electrical and Electronics Engineers Access, 8, 191495–191509. https://doi.org/10.1109/ACCESS.2020.3031974
  • Baddula, M., Ray, B., & Chowdhury, M. (2020, December). Performance evaluation of Aloha and CSMA for LoRaWAN network. In 2020 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE), Gold Coast, Australia (pp. 1–6). IEEE.
  • Beltramelli, L., Mahmood, A., Österberg, P., Gidlund, M., Ferrari, P., & Sisinni, E. (2021). The energy efficiency of slotted LoRaWAN communication with out-of-band synchronization. IEEE Transactions on Instrumentation and Measurement, 70, 1–11. https://doi.org/10.1109/TIM.2021.3051238
  • Chinchilla-Romero, N., Navarro-Ortiz, J., Muñoz, P., & Ameigeiras, P. (2021). Collision avoidance resource allocation for LoRaWAN. Sensors, 21(4), 1218. https://doi.org/10.3390/s21041218
  • Dimakis, T., Louta, M., Kyriakidis, T., Boulogeorgos, A. A. A., Banti, K., Karampelia, I., & Papadimitriou, N. (2022, June). GreenLoRaWAN: An energy-efficient and resilient LoRaWAN communication protocol. In 2022 IEEE Symposium on Computers and Communications (ISCC), Rhodes, Greece (pp. 01–07). IEEE.
  • DiVincenzo, V., Heusse, M., & Tourancheau, B. (2019, May). Improving downlink scalability in LoRaWAN. In ICC 2019–2019 IEEE International Conference on Communications (ICC), Shanghai, China (pp. 1–7). IEEE.
  • Finnegan, J., Farrell, R., & Brown, S. (2020, August). Lightweight timeslot scheduling through periodicity detection for increased scalability of LoRaWAN. In 2020 IEEE 21st International Symposium on“A World of Wireless, Mobile and Multimedia Networks”(WoWMoM), Cork, Ireland (pp. 8–15). IEEE.
  • Garrido-Hidalgo, C., Roda-Sanchez, L., Ramírez, F. J., Fernández-Caballero, A., & Olivares, T. (2023). Efficient online resource allocation in large-scale LoRaWAN networks: A multi-agent approach. Computer Networks, 221, 109525. https://doi.org/10.1016/j.comnet.2022.109525
  • Hasegawa, Y., & Suzuki, K. (2019, May). A multi-user ack-aggregation method for large-scale reliable lorawan service. In ICC 2019-2019 IEEE International Conference on Communications (ICC), Shanghai, China (pp. 1–7). IEEE.
  • Hoang, Q. L., & Oh, H. (2022). A Real-Time LoRa Protocol Using Logical Frame Partitioning for Periodic and Aperiodic Data Transmission. IEEE Internet of Things Journal, Espoo, Finland.
  • Kufakunesu, R., Hancke, G., & Abu-Mahfouz, A. (2022). A Fuzzy-Logic Based Adaptive Data Rate Scheme for Energy-Efficient LoRaWAN Communication. Journal of Sensor & Actuator Networks, 11(4), 65. https://doi.org/10.3390/jsan11040065
  • Lee, J., Jeong, W. C., & Choi, B. C. (2018, October). A scheduling algorithm for improving the scalability of LoRaWAN. In 2018 International Conference on Information and Communication Technology Convergence (ICTC), Jeju, Korea (South) (pp. 1383–1388). IEEE.
  • Leonardi, L., Battaglia, F., & Bello, L. L. (2019). RT-LoRa: A medium access strategy to support real-time flows over LoRa-based networks for industrial IoT applications. IEEE Internet of Things Journal, 6(6), 10812–10823. https://doi.org/10.1109/JIOT.2019.2942776
  • Leonardi, L., Battaglia, F., Patti, G., & Bello, L. L. (2018, October). Industrial LoRa: A novel medium access strategy for LoRa in industry 4.0 applications. In IECON 2018-44th Annual Conference of the IEEE Industrial Electronics Society, Washington, DC, USA (pp. 4141–4146). IEEE.
  • Lima, E., Moraes, J., Oliveira, H., Cerqueira, E., Zeadally, S., & Rosário, D. (2021). Adaptive priority-aware LoRaWAN resource allocation for internet of things applications. Ad Hoc Networks, 122, 102598. https://doi.org/10.1016/j.adhoc.2021.102598
  • Loukil, S., Fourati, L. C., Nayyar, A., & Chee, K. W. A. (2022). Analysis of LoRaWAN 1.0 and 1.1 protocols security mechanisms. Sensors, 22(10), 3717. https://doi.org/10.3390/s22103717
  • Magrin, D., Capuzzo, M., & Zanella, A. (2019). A thorough study of LoRaWAN performance under different parameter settings. IEEE Internet of Things Journal, 7(1), 116–127. https://doi.org/10.1109/JIOT.2019.2946487
  • Mai, D. L., & Kim, M. K. (2020). Multi-hop LoRa network protocol with minimized latency. Energies, 13(6), 1368. https://doi.org/10.3390/en13061368
  • Matni, N., Moraes, J., Pacheco, L., Rosário, D., Oliveira, H., Cerqueira, E., & Neto, A. (2020, June). Experimenting long range wide area network in an e-health environment: Discussion and future directions. In 2020 International Wireless Communications and Mobile Computing (IWCMC), Limassol, Cyprus (pp. 758–763). IEEE.
  • Noor-A-Rahim, M., Khyam, M. O., Mahmud, A., Li, X., Pesch, D., & Poor, H. V. (2022). Hybrid chirp signal design for improved Long-Range (LoRa) communications. Signals, 3(1), 1–10. https://doi.org/10.3390/signals3010001
  • Qian, Q., Shu, L., Leng, Y., & Bao, Z. (2022). LoRaWAN network downlink routing control strategy based on the SDN framework and improved ARIMA model. Future Internet, 14(11), 307. https://doi.org/10.3390/fi14110307
  • Qin, Z., Li, F. Y., Li, G. Y., McCann, J. A., & Ni, Q. (2019). Low-power wide-area networks for sustainable IoT. IEEE Wireless Communications, 26(3), 140–145. https://doi.org/10.1109/MWC.2018.1800264
  • Rajab, H., Cinkler, T., & Bouguera, T. (2021). IoT scheduling for higher throughput and lower transmission power. Wireless Networks, 27(3), 1701–1714. https://doi.org/10.1007/s11276-020-02307-1
  • Reynders, B., Wang, Q., Tuset-Peiro, P., Vilajosana, X., & Pollin, S. (2018). Improving reliability and scalability of LoRaWANs through lightweight scheduling. IEEE Internet of Things Journal, 5(3), 1830–1842. https://doi.org/10.1109/JIOT.2018.2815150
  • Subbaraman, R., Guntupalli, Y., Jain, S., Kumar, R., Chintalapudi, K., & Bharadia, D. (2022, October). BSMA: Scalable LoRa networks using full duplex gateways. In Proceedings of the 28th Annual International Conference on Mobile Computing And Networking, NSW, Sydney, Australia (pp. 676–689).
  • Suryavansh, S., Benna, A., Guest, C., & Chatterjee, S. (2021). A data-driven approach to increasing the lifetime of IoT sensor nodes. Scientific Reports, 11(1), 1–12. https://doi.org/10.1038/s41598-021-01431-y
  • Tran-Quang, V., Nguyen, H. D., & Tien, D. T. (2021). Design and implementation of a LoRa communication system supporting edge computing on the smart multi-platform IoT gateway. Computing, 31(2), 010–018.
  • Triantafyllou, A., Sarigiannidis, P., Lagkas, T., Moscholios, I. D., & Sarigiannidis, A. (2021). Leveraging fairness in LoRaWAN: A novel scheduling scheme for collision avoidance. Computer Networks, 186, 107735. https://doi.org/10.1016/j.comnet.2020.107735
  • Triantafyllou, A., Zorbas, D., & Sarigiannidis, P. (2022). Time-slotted LoRa MAC with variable payload support. Computer Communications, 193, 146–154. https://doi.org/10.1016/j.comcom.2022.06.043
  • Tsakmakis, A., Valkanis, A., Beletsioti, G., Kantelis, K., Nicopolitidis, P., & Papadimitriou, G. (2022). An adaptive LoRaWAN MAC protocol for event detection applications. Sensors, 22(9), 3538. https://doi.org/10.3390/s22093538
  • Wu, Y., He, Y., & Shi, L. (2020). Energy-saving measurement in LoRaWAN-based wireless sensor networks by using compressed sensing. Institute of Electrical and Electronics Engineers Access, 8, 49477–49486. https://doi.org/10.1109/ACCESS.2020.2974879
  • Zhong, C., & Springer, A. (2022). Design and evaluation of innovative protocols for LoRa. IET Wireless Sensor Systems, 12(1), 12–20. https://doi.org/10.1049/wss2.12033
  • Zhu, G., Liao, C. H., Sakdejayont, T., Lai, I. W., Narusue, Y., & Morikawa, H. (2019). Improving the capacity of a mesh LoRa network by spreading factor-based network clustering. Institute of Electrical and Electronics Engineers Access, 7, 21584–21596. https://doi.org/10.1109/ACCESS.2019.2898239
  • Zorbas, D., Abdelfadeel, K., Kotzanikolaou, P., & Pesch, D. (2020). TS-LoRa: Time-slotted LoRaWAN for the industrial internet of things. Computer Communications, 153, 1–10. https://doi.org/10.1016/j.comcom.2020.01.056

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.