58
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Compact microstrip patch antenna loaded with Artificial Transmission Line for wireless applications

ORCID Icon, ORCID Icon, ORCID Icon, &
Received 08 Jul 2023, Accepted 26 Jan 2024, Published online: 02 Feb 2024

References

  • AlSharabati, T. (2021). Microstrip Patch Antenna Miniaturization Using Magneto-Dielectric Substrates for Electromagnetic Energy Harvesting. Journal of Communications Software and Systems, 17(2), 116–123. https://doi.org/10.24138/jcomss-2020-0005
  • Ameen, M., & Chaudhary, R. K. (2020). Artificial transmission line loaded dual-polarized electrically small antenna for wireless applications. In XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science (pp. 1–4). Rome, Italy. https://doi.org/10.23919/URSIGASS49373.2020.9232142
  • Boukarkar, A., & Lin, X. Q. (2020). Miniaturized frequency-tunable self-quadruplexing four-element MIMO antenna system. IET Microwaves, Antennas & Propagation, 14(9), 973–979. https://doi.org/10.1049/iet-map.2020.0065
  • Chiang, Y.-C., & Chen, C.-Y. (2001). Design of a wide-band lumped-element 3-dB quadrature coupler. IEEE Transactions on Microwave Theory and Techniques, 49(3), 476–479. https://doi.org/10.1109/22.910551
  • Dang, D.-N., & Seo, C. (2019). Compact high gain resonant cavity antenna with via hole feed patch and hybrid parasitic ring superstrate. Institute of Electrical and Electronics Engineers Access, 7, 161963–161974. https://doi.org/10.1109/ACCESS.2019.2950726
  • Das, S., Sawyer, D. J., Diamanti, N., Annan, A. P., & Iyer, A. K. (2020). A strongly miniaturized and inherently matched folded dipole antenna for narrowband applications. IEEE Transactions on Antennas and Propagation, 68(5), 3377–3386. https://doi.org/10.1109/TAP.2019.2963232
  • Eccleston, K. W., & Ong, S. H. M. (2003). Compact planar microstrip line branch-line and rat race couplers. IEEE Transactions on Microwave Theory and Techniques, 51(10), 2119–2125. https://doi.org/10.1109/TMTT.2003.817442
  • Elwi, C.-T. A., AL-Hussain, Z. A., & Tawfeeq, O. (2019, June). Hilbert metamaterial printed antenna based on organic substrates for energy harvesting. IET Microwaves, Antennas and Propagation, 12(4), 1–8. https://doi.org/10.1049/iet-map.2018.5948
  • Elwi, D.-T. A. (2019, January). Novel UWB printed metamaterial microstrip antenna based organic substrates for RF-Energy harvesting applications. AEU - International Journal of Electronics & Communications, 101, 44–53. https://doi.org/10.1016/j.aeue.2019.01.026
  • Elwi, T., & Al-Saegh, A. (2021). Further realization of a flexible metamaterial-based antenna on indium nickel oxide polymerized palm fiber substrates for RF energy harvesting. International Journal of Microwave and Wireless Technologies, 13(1), 67–75. https://doi.org/10.1017/S1759078720000665
  • Elwi, T. A., Jassim, D. A., & Mohammed, H. H. (2020). Novel miniaturized folded UWB microstrip antenna-based metamaterial for RF energy harvesting. International Journal of Communication Systems, 1(2). https://doi.org/10.1002/dac.4305
  • Fang, Y., Wang, Y., Liu, C., & Liu, X. (2022). Near-field radio frequency identification leaky-wave antenna based on artificial transmission line. International Journal of RF and Microwave Computer-Aided Engineering, 32(4), e23044. https://doi.org/10.1002/mmce.23044
  • Gianvittorio, J. P., & Rahmat-Samii, Y. (2002). Fractal antennas: A novel antenna miniaturization technique, and applications. IEEE Antennas and Propagation Magazine, 44(1), 20–36. https://doi.org/10.1109/74.997888
  • Guo, L., Min, M., Che, W., & Yang, W. (2019). A novel miniaturized planar ultra-wideband antenna. Institute of Electrical and Electronics Engineers Access, 7, 2769–2773. https://doi.org/10.1109/ACCESS.2018.2886799
  • Hajizadeh, P., Hassani, H. R., & Sedighy, S. H. (2013). Planar artificial transmission lines loading for miniturization of RFID printed Quasi-Yagi Antenna. IEEE Antennas and Wireless Propagation Letters, 12, 464–467. https://doi.org/10.1109/LAWP.2013.2253540
  • Hussain, N., Abbas, A., Park, S., Park, S. G., & Kim, N. (2022). A compact tri-band antenna based on inverted-L stubs for smart devices. CMC-Computers Materials & Continua, 70(2), 3321–3331. https://doi.org/10.32604/cmc.2022.020688
  • Iqbal, A., Al-Hasan, M., Mabrouk, I. B., & Nedil, M. (2021). Ultracompact Quarter-Mode Substrate Integrated Waveguide Self-Diplexing Antenna. IEEE Antennas and Wireless Propagation Letters, 20(7), 1269–1273. https://doi.org/10.1109/LAWP.2021.3077451
  • Kenari, M. A., Moghadasi, M. N., Sadeghzadeh, R. A., Virdee, B. S., & Limiti, E. (2016). Periodic array of complementary artificial magnetic conductor metamaterials-based multiband antennas for broadband wireless transceivers. *IET Microwaves, Antennas & Propagation, 10(15), 1682–1691. https://doi.org/10.1049/iet-map.2016.0069
  • Khan, S., Ali, H., Khalily, M., Shah, S. U. A., Kazim, J. U. R., Ali, H., & Tanougast, C. (2020). Miniaturization of dielectric resonator antenna by using artificial magnetic conductor surface. Institute of Electrical and Electronics Engineers Access, 8, 68548–68558. https://doi.org/10.1109/ACCESS.2020.2986048
  • Kumar, P., Ali, T., & Pai, M. M. M. (2021). Electromagnetic metamaterials: A new paradigm of antenna design. Institute of Electrical and Electronics Engineers Access, 9, 18722–18751. https://doi.org/10.1109/ACCESS.2021.3053100
  • Lee, H. M. (2011). A compact zeroth-order resonant antenna employing novel composite right/left-handed transmission-line unit-cells structure. IEEE Antennas and Wireless Propagation Letters, 10, 1377–1380. https://doi.org/10.1109/LAWP.2011.2177798
  • Mahrokh, M., & Koziel, S. (2021). Optimization-based antenna miniaturization using adaptively adjusted penalty factors. Electronics, 10(15), 1751. https://doi.org/10.3390/electronics10151751
  • Mosallaei, H., & Sarabandi, K. (2004). Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate. IEEE Transactions on Antennas and Propagation, 52(9), 2403–2414. https://doi.org/10.1109/TAP.2004.834135
  • Shin, G., Kong, M., Lee, S. H., Kim, S. T., & Yoon, I. J. (2018). Gain characteristic maintained, miniaturized LPDA antenna using partially applied folded planar helix dipoles. Institute of Electrical and Electronics Engineers Access, 6, 25874–25880. https://doi.org/10.1109/ACCESS.2018.2834931
  • Umakov, D., Chikrin, D., & Kokunin, P. (2020). Miniaturization of a koch-type fractal antenna for wi-fi applications. Fractal and Fractional, 4(2), 25. https://doi.org/10.3390/fractalfract4020025
  • Wang, C.-W., Ma, T. G., & Yang, C.-F. (2007). A new planar artificial transmission line and its applications to a miniaturized butler matrix. IEEE Transactions on Microwave Theory and Techniques, 55(12), 2792–2801. https://doi.org/10.1109/TMTT.2007.909474
  • Yang, X., Ding, Z., & Zhang, Z. (2021). A complete flow of miniaturizing coil antennas based on matching circuit. Electronics, 10(10), 1159. https://doi.org/10.3390/electronics10101159
  • Zhou, W., & Lu, M. (2020). Miniaturization of quasi-yagi antenna array with high gain using split-ring resonators. International Journal of Antennas and Propagation 2020, 1–12. Article ID 4915848. https://doi.org/10.1155/2020/4915848

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.