18
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Optimisation of asymmetries in mm-wave single-element fractal antenna for gain-bandwidth enhancement

, &
Received 06 May 2023, Accepted 02 Mar 2024, Published online: 10 Apr 2024

References

  • Cao, T. N., Nguyen, M. T., Phan, H. L., Nguyen, D. D., Vu, D. L., Nguyen, T. Q. H., Kim, J. M., & Sim, C. Y. D. (2023). Millimeter-wave broadband MIMO antenna using metasurfaces for 5G cellular networks. International Journal of RF and Microwave Computer-Aided Engineering, 2023, 1–11. https://doi.org/10.1155/2023/9938824
  • Chaudhary, A. K., & Manohar, M. (2022). A modified SWB hexagonal fractal spatial diversity antenna with high isolation using meander line approach. IEEE Access, 10, 10238–10250. https://doi.org/10.1109/access.2022.3144850
  • Chen, W. L., Wang, G. M., & Zhang, C. X. (2009). Bandwidth enhancement of a microstrip-line-fed printed wide-slot antenna with a fractal-shaped slot. IEEE Transactions on Antennas and Propagation, 57(7), 2176–2179. https://doi.org/10.1109/TAP.2009.2021974
  • Hamza, A., Chaabane, A., & Attia, H. (2022). Gain improvement of wideband patch antenna at millimeter-wave band using novel metamaterial superstrate. 2022 16th European Conference on Antennas and Propagation (EuCAP) (pp. 1–4). Madrid, Spain. https://doi.org/10.23919/EuCAP53622.2022.9769308
  • Ikram, M., Nguyen-Trong, N., & Abbosh, A. M. (2019). Realization of a tapered slot array as both decoupling and radiating structure for 4G/5G wireless devices. IEEE Access, 7, 159112–159118. https://doi.org/10.1109/ACCESS.2019.2950660
  • Jilani, S. F., & Alomainy, A. (2018). Millimetre-wave T-shaped MIMO antenna with defected ground structures for 5G cellular networks. IET Microwaves, Antennas and Propagation, 12(5), 672–677. https://doi.org/10.1049/iet-map.2017.0467
  • Kao, H. L., Yeh, C.-S., Zhang, X. Y., Cho, C.-L., Dai, X., Wei, B.-H., Chang, L.-C., & Chiu, H.-C. (2014). Inkjet printed series-fed two-dipole antenna comprising a balun filter on liquid crystal polymer substrate. IEEE Transactions on Components, Packaging, and Manufacturing Technology, 4(7), 1228–1236. https://doi.org/10.1109/TCPMT.2014.2320730
  • Khinda, J. S., Tripathy, M. R., & Gambhir, D. (2017). Multi-edged wide-band rectangular microstrip fractal antenna array for C-and X-band wireless applications Systems and Computers. Journal of Circuits, Systems & Computers, 26(4), 1750068. https://doi.org/10.1142/S0218126617500682
  • Khinda, J. S., Tripathy, M. R., & Gambhir, D. (2018). Improvement in depth of return loss of microstrip antenna for S-band applications. Journal of Circuits, Systems & Computers, 27(4), 1850058. https://doi.org/10.1142/S0218126618500585
  • Kumar, M., & Nath, V. (2018). Introducing multiband and wideband microstrip patch antennas using fractal geometries: Development in Last Decade. Wireless Personal Communications, 98(2), 2079–2105. https://doi.org/10.1007/s11277-017-4965-x
  • Malik, P. K., Wadhwa, D. S., & Khinda, J. S. (2020). A survey of device to device and cooperative communication for the future cellular networks. International Journal of Wireless Information Networks, 27(3), 411–432. https://doi.org/10.1007/s10776-020-00482-8
  • Samadi Taheri, M. M., Abdipour, A., Zhang, S., & Pedersen, G. F. (2019). Integrated millimeter-wave wideband end-fire 5G beam steerable array and low-frequency 4G LTE antenna in mobile terminals. IEEE Transactions on Vehicular Technology, 68(4), 4042–4046. https://doi.org/10.1109/tvt.2019.2899178
  • Singh, S., Sethi, G., & Khinda, J. S. (2022a). A historical development and futuristic trends of microstrip antennas. International Journal of Computing and Digital Systems, 11(1), 187–204. https://doi.org/10.12785/ijcds/1201017
  • Singh, S., Sethi, G., & Khinda, J. S. (2022b). Improvement in depth of reflection co-efficient below-20 dB for millimeter–wave antenna. In Journal of Physics: Conference Series (Vol. 2327, p. 012048). IOP Publishing. https://doi.org/10.1088/1742-6596/2327/1/012048.
  • Singh, S., Sethi, G., & Khinda, J. S. (2023). Low-loss UWB mm-wave monopole antenna using patch size enhancement for next-generation (5G and beyond) communications. Journal of Infrared, Millimeter and Terahertz Waves, 44(11–12), 936–963. https://doi.org/10.1007/s10762-023-00941-2
  • Tang, Wahid. (2004). Hexagonal fractal multiband antenna. IEEE Antennas & Wireless Propagation Letters, 3, 111–112. https://doi.org/10.1109/LAWP.2004.829989
  • Toktas, A. R., & Turkmen, A. (2023). Ultra-wideband monopole antenna with defected ground for millimeter-wave applications. Journal of Infrared, Millimeter and Terahertz Waves, 44(1–2), 37–51. https://doi.org/10.1007/s10762-023-00904-7
  • Ullah, S., Ullah, S., & Khan, S. (2020). Design and analysis of a 60 GHz millimeter wave antenna. Jurnal Teknologi, 78(4–3), 4–3. https://doi.org/10.11113/jt.v78.8249
  • Varshney, A., Neebha, T. M., Sharma, V., & Andrushia, A. D. (2023). Low-cost L-Band to ku-band frequency reconfigurable BAR64-02V controlled antenna for satellite, military, and radar applications. IETE Journal of Research, 1–14. https://doi.org/10.1080/03772063.2023.2260343
  • Varshney, A., Sharma, V., & Sharma, A. K. (2023). RLC-equivalent circuit based stub loaded 2x2 MIMO antenna for wireless applications. Microwave Review, 29(1), 44–54.
  • Wadhwa, D. S., Malik, P. K., & Khinda, J. S. (2022). Improvement in 5 dBi gain-bandwidth of wide band antenna for indoor K–, Ka–Band, millimeter-wave applications. Journal of Infrared, Millimeter, and Terahertz Waves, 43(7–8), 527–549. https://doi.org/10.1007/s10762-022-00865-3
  • Yang, Y.-H., Sun, B.-H., & Guo, J.-L. (2019). A low-cost, single-layer, dual circularly polarized antenna for millimeter-wave applications. IEEE Antennas and Wireless Propagation Letters, 18(4), 651–655. https://doi.org/10.1109/LAWP.2019.2900301

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.