33
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Enhanced FPGA linear phase FIR filter with amalgam multiplier

, , &
Received 06 Oct 2023, Accepted 31 Mar 2024, Published online: 10 May 2024

References

  • Abdulrahman, E. A. H., & Reyhani-Masoleh, A. (2016). High-speed hybrid-double multiplication architectures using new serial-out bit-level mastrovito multipliers. IEEE Transactions on Computers, 65(6), 1734–1747. https://doi.org/10.1109/TC.2015.2456023
  • Ansari, M. S., Jiang, H., Cockburn, B. F., & Han, J. (2018). Low-power approximate multipliers using encoded partial products and approximate compressors. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 8(3), 404–416. https://doi.org/10.1109/JETCAS.2018.2832204
  • Bala, S. T., Shangavi, D., & Sangeetha, P. (2018). Area and power efficient approximate wallace tree multiplier using 4: 2 compressors. International Conference on Intelligent Computing and Communication for Smart World (I2C2SW), 1(1), 287–290. https://doi.org/10.1109/I2C2SW45816.2018.8997160
  • Capizzi, G., Coco, S., Sciuto, G. L., & Napoli, C. (2018). A new iterative FIR filter design approach using a Gaussian approximation. IEEE Signal Processing Letters, 25(11), 1615–1619. https://doi.org/10.1109/LSP.2018.2866926
  • Chang, Y.-J., Cheng, Y.-C., Liao, S.-C., & Hsiao, C.-H. (2020). A low power radix-4 booth multiplier with pre-encoded mechanism. Institute of Electrical and Electronics Engineers Access, 8, 114842–114853. https://doi.org/10.1109/ACCESS.2020.3003684
  • Chen, Y.-H. (2015). An accuracy-adjustment fixed-width booth multiplier based on multilevel conditional probability. IEEE Transactions on Very Large-Scale Integration (VLSI) Systems, 23(1), 203–207. https://doi.org/10.1109/TVLSI.2014.2302447
  • Chen, H., Yang, H., Song, W., Lu, Z., Fu, Y., Li, L., & Yu, Z. (2021). Symmetric-mapping LUT-Based method and architecture for computing XY-Like functions. IEEE Transactions on Circuits & Systems I: Regular Papers, 68(3), 1231–1244. https://doi.org/10.1109/TCSI.2020.3046783
  • Cho, S. M., Meher, P. K., Nhat Trung, L. T., Cho, H. J., & Park, S. Y. (2021). Design of very high-speed pipeline FIR filter through precise critical path analysis. Institute of Electrical and Electronics Engineers Access, 9, 34722–34735. https://doi.org/10.1109/ACCESS.2021.3061759
  • Fadavi-Ardekani, J. (1993). M*N Booth encoded multiplier generator using optimized Wallace trees. IEEE Transactions on Very Large-Scale Integration (VLSI) Systems, 1(2), 120–125. https://doi.org/10.1109/92.238424
  • Itoh, N., Naemura, Y., Makino, H., Nakase, Y., Yoshihara, T., & Horiba, Y. (2001). A 600-MHz 54/spl times/54-bit multiplier with rectangular-styled Wallace tree. IEEE Journal of Solid-State Circuits, 36(2), 249–257. https://doi.org/10.1109/4.902765
  • Jacinta, P., & Manoj Kumar, K. (2019). Design and implementation of combined pipelining and parallel processing architecture for FIR and IIR filters using VHDL. International Journal of VLSI Design and Communication Systems, 10(4), 957–964. https://doi.org/10.5121/vlsic.2019.10401
  • Karuppusam, P. (2019). Design and analysis of low-power, high-speed Baugh Wooley Multiplier. Journal of Electronics and Informatics, 1(2), 60–70. https://doi.org/10.36548/jei.2019.2.001
  • Kaur Suman, S., & Manna, M. S. (2013). Implementation of modified booth algorithm (radix 4) and its comparison with booth algorithm (radix-2). Advance in Electronic and Electric Engineering, 3(6), 683–690.
  • Kavand, N., Darjani, A., Rai, S., & Kumar, A. (2023). Design of energy-efficient RFET-Based exact and approximate 4: 2 compressors and multipliers. IEEE Transactions on Circuits and Systems II: Express Briefs, 70(9), 3644–3648. https://doi.org/10.1109/TCSII.2023.3275983
  • Kuang, S. R., Wang, J. P., & Guo, C. Y. (2009). Modified booth multipliers with a regular partial product array. IEEE Transactions on Circuits and Systems II: Express Briefs, 56(5), 404–408. https://doi.org/10.1109/TCSII.2009.2019334
  • Kumar, N., Adithyaa, R. S., Kumar, B., & Pavithra, T. (2020). Design analysis of wallace tree based multiplier using approximate full adder and Kogge Stone adder. International Conference on Advanced Computing and Communication Systems, 2(4), 612–616. https://doi.org/10.1109/ICACCS48705.2020.9074336
  • Kumm, M., Volkova, A., & Filip, S.-I. (2023). Design of optimal multiplierless FIR filters with minimal number of adders. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 42(2), 658–671. https://doi.org/10.1109/TCAD.2022.3179221
  • Lakshmi, V., Reuben, J., & Pudi, V. (2022). A novel In-memory wallace tree multiplier architecture using majority logic. IEEE Transactions on Circuits and Systems I: Regular Papers, 69(3), 1148–1158. https://doi.org/10.1109/TCSI.2021.3129827
  • Liu, W., Qian, L., Wang, C., Jiang, H., Han, J., & Lombardi, F. (2017). Design of approximate radix-4 booth multipliers for error-tolerant computing. IEEE Transactions on Computers, 66(8), 1435–1441. https://doi.org/10.1109/TC.2017.2672976
  • Li, Z., Zheng, S., Zhang, J., Lu, Y., Gao, J., Tao, J., & Wang, L. (2022). Adaptable approximate multiplier design based on input distribution and polarity. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 30(12), 1813–1826. https://doi.org/10.1109/TVLSI.2022.3197229
  • Madhavi, S., Rasagna, K., Kavya, N., Sindhu, M., & Kaveri, V. (2018). Implementation of programmable FIR filter using dadda multiplier and parallel prefix adder. International Conference on Inventive Research in Computing Applications (ICIRCA) (pp. 585–589). Coimbatore, India. https://doi.org/10.1109/ICIRCA.2018.8597249
  • Martha, P., Kajal, N., Kumari, P., & Rahul, R. (2018). An efficient way of implementing high speed 4-bit advanced multipliers in FPGA. 2nd International Conference on Electronics, Materials Engineering & Nano-Technology (IEMENTech), 1(1), 1–5. https://doi.org/10.1109/IEMENTECH.2018.8465375
  • Moss, D. J. M., Boland, D., & Leong, P. H. W. (2019). A two-speed, radix-4, serial–parallel multiplier. IEEE Transactions on Very Large-Scale Integration (VLSI) Systems, 27(4), 769–777. https://doi.org/10.1109/TVLSI.2018.2883645
  • Mukherjee, B., & Ghosal, A. (2019). Counter based Low Power, Low Latency Wallace tree multiplier using GDI technique for on-chip digital filter applications. Devices for Integrated Circuit, 2(1), 151–155. https://doi.org/10.1109/DEVIC.2019.8783456
  • Raja Sudharsan, R., & Deny, J. (2020). Field programmable gate array (FPGA) - based fast and low-pass finite impulse response (FIR) filter. Intelligent Computing and Innovation on Data Science Springer, 28(2), 199–206. https://doi.org/10.1007/978-981-15-3284-9_21
  • Raveendran, S., Edavoor, P. J., Kumar, Y. B. N., & Vasantha, M. H. (2021). Inexact signed Wallace tree multiplier design using reversible logic. IEEE Access, 9, 108119–108130. https://doi.org/10.1109/ACCESS.2021.3100892
  • Ray, D., George, N. V., & Meher, P. K. (2018). Efficient shift-add implementation of FIR filters using variable partition hybrid form structures. IEEE Transactions on Circuits and Systems I: Regular Papers, 65(12), 4247–4257. https://doi.org/10.1109/TCSI.2018.2838666
  • Sameeksha Rai, N., Pannaga Shree, B. S., Meghana, Y. P., Chavan, A., & Aradhya, H. V. R. (2018). Design and implementation of 16 tap FIR filter for DSP applications. Second International Conference on Advances in Electronics, Computers and Communications, 2(7), 1–5. https://doi.org/10.1109/ICAECC.2018.8479480
  • Sarma, R. K., Khan, M. T., Shaik, R. A., & Hazarika, J. (2020). A novel time-shared and LUT-Less pipelined architecture for LMS adaptive filter. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 28(1), 188–197. https://doi.org/10.1109/TVLSI.2019.2935399
  • Sharma, A., & Rawat, T. K. (2018). Truncated wallace based single precision floating point multiplier. 7th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), 1(1), 407–411. https://doi.org/10.1109/ICRITO.2018.8748843
  • Sundhar, A., Tharshini, S. D., Priyanka, G., Ragul, S., & Saranya, C. (2019). Performance analysis of Wallace tree multiplier with Kogge stone adder using 15-4 compressor. International Conference on Communication and Signal Processing, 3(5), 0903–0907. https://doi.org/10.1109/ICCSP.2019.8697981
  • Tang, X., Xing, Y., Wu, H., & Zhao, J. (2020). An improved LLC resonant converter with reconfigurable hybrid voltage multiplier and PWM-Plus-PFM hybrid control for wide output range applications. IEEE Transactions on Power Electronics, 35(1), 185–197. https://doi.org/10.1109/TPEL.2019.2914945
  • Thijssen, B. J., Klumperink, E. A., Quinlan, P., & Nauta, B. (2020). Low-power highly selective channel filtering using a transconductor–capacitor analog FIR. IEEE Journal of Solid-State Circuits, 55(7), 1785–1795. https://doi.org/10.1109/JSSC.2020.2987731
  • Venkatachalam, S., Adams, E., Lee, H. J., & Ko, S. (2019). Design and analysis of area and power efficient approximate booth multipliers. IEEE Transactions on Computers, 68(11), 1697–1703. https://doi.org/10.1109/TC.2019.2926275
  • Wang, Y., Li, Y., Shen, H., Fan, D., Wang, W., Li, L., Liu, Q., Zhang, F., Wang, X., Chang, M.-F., & Liu, M. (2019). A few-step and low-cost memristor logic based on MIG logic for frequent-off Instant-on circuits in IoT applications. IEEE Transactions on Circuits and Systems II: Express Briefs, 66(4), 662–666. https://doi.org/10.1109/TCSII.2018.2882388
  • Waris, H., Wang, C., & Liu, W. (2020). Hybrid low radix encoding-based approximate booth multipliers. IEEE Transactions on Circuits and Systems II: Express Briefs, 67(12), 3367–3371. https://doi.org/10.1109/TCSII.2020.2975094
  • Zhang, Z., & He, Y. (2017). A low-error energy-efficient fixed-width booth multiplier with sign-digit-based conditional probability estimation. IEEE Transactions on Circuits and Systems, 65(2), 236–240. https://doi.org/10.1109/TCSII.2017.2709801

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.