26
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Miller capacitance reduction in negative capacitance TFETs

ORCID Icon, , &
Received 31 Aug 2023, Accepted 01 Apr 2024, Published online: 20 May 2024

References

  • Alper, C., De Michielis, L.,Dagtekin, N., Lattanzio, L., & Ionescu, A. M. (2012). “Tunnel FET with non-uniform gate capacitance for improved device and circuit level performance.” 2012 Proceedings of the European Solid-State Device Research Conference (ESSDERC), Bordeaux, France (pp. 161–164). https://doi.org/10.1109/ESSDERC.2012.6343358
  • Arun, A., Sreelekshmi, P., & Jacob, J. (2022). Design and analysis of dopingless 1t dram using work function engineered tunnel field effect transistors. Microelectronics Journal, 124, 105433. https://doi.org/10.1016/j.mejo.2022.105433
  • Choi, W., & Lee, H. (2016). Demonstration of hetero-gate-dielectric tunneling field-effect transistors (hg tfets). Nano Convergence, 3(1). https://doi.org/10.1186/s40580-016-0073-y
  • Chowdhury, N., Azad, S., & Khosru, Q. D. M. (2014). Negative capacitance tunnel field effect transistor: A novel device with low subthreshold swing and high on current. ECS Transactions, 58(16), 1–8. https://doi.org/10.1149/05816.0001ecst
  • Dong, Y., Zhang, L., Li, X., Lin, X., & Chan, M. (2016). A compact model for double-gate heterojunction tunnel fets. IEEE Transactions on Electron Devices, 63(11), 4506–4513. https://doi.org/10.1109/TED.2016.2604001
  • Ghosh, P., & Bhowmick, B. (2019). The impact of interface traps (acceptor/donor) on fe ds-sbtfet characteristics. TENCON 2019 - 2019 IEEE Region 10 Conference (TENCON), Kochi, India (pp. 73–77).
  • Han, T., Liu, H., Chen, S., Wang, S., & Xie, H. (2020). Tcad simulation of the doping-less tfet with ge/sige/si hetero-junction and hetero-gate dielectric for the enhancement of device performance. Coatings, 10(3), 278. https://doi.org/10.3390/coatings10030278
  • Hu, V. P.-H., Lin, H.-H., Lin, Y.-K., & Hu, C. (2020). Optimization of negative-capacitance vertical-tunnel fet (ncvt-fet). IEEE Transactions on Electron Devices, 67(6), 2593–2599. https://doi.org/10.1109/TED.2020.2986793
  • Jain, P., Yadav, C., Agarwal, A., & Chauhan, Y. (2017). Surface potential based modeling of charge, current, and capacitances in dgtfet including mobile channel charge and ambipolar behaviour. Solid-State Electronics, 134, 74–81. https://doi.org/10.1016/j.sse.2017.05.012
  • James, S. U. S., Jacob, J., & Pradeep, A. (2021). Enhancement and modeling of drain current in negative capacitance double gate TFET. Silicon, 14(11), 6157–6167. https://doi.org/10.1007/s12633-021-01382-z
  • Jiang, C., Liang, R., & Xu, J. (2017). Investigation of negative capacitance gate-all-around tunnel fets combining numerical simulation and analytical modeling. IEEE Transactions on Nanotechnology, 16(1), 58–67.
  • Kamaei, S., Saeidi, A., Gastaldi, C., Rosca, T., Capua, L., Cavalieri, M., & Ionescu, A. M. (2021). Gate energy efficiency and negative capacitance in ferroelectric 2d/2d tfet from cryogenic to high temperatures. Npj 2D Materials and Applications, 5(1). https://doi.org/10.1038/s41699-021-00257-6
  • Kaur, S., Raman, A., & Sarin, R. (2021). A charge-based capacitance model for double-gate hetero-gate-dielectric tunnel fet. Superlattices and Microstructures, 150(2). https://doi.org/10.1016/j.spmi.2020.106748
  • Kobayashi, M., & Hiramoto, T. (2016). On device design for steep-slope negative-capacitance field-effect-transistor operating at sub-0.2v supply voltage with ferroelectric hfo2 thin film. AIP Advances, 6(2), 025113. https://doi.org/10.1063/1.4942427
  • Kumar, J., Vishnoi, M., Rajat, P., & Pratyush. (2016). Tunnel Field-Effect Transistors (TFET). John Wiley and Sons, Ltd.
  • Lu, B., Lu, H., Zhang, Y., Zhang, Y., Cui, X., Lv, Z., & Liu, C. (2018). Fully analytical carrier-based charge and capacitance model for hetero-gate-dielectric tunneling field-effect transistors. IEEE Transactions on Electron Devices, 65(8), 3555–3561. https://doi.org/10.1109/TED.2018.2849742
  • Lu, B., Lu, H., Zhang, Y., Zhang, Y., Cui, X., Lv, Z., Yang, S., & Liu, C. (2018). A charge-based capacitance model for double-gate tunnel fets with closed-form solution. IEEE Transactions on Electron Devices, 65(1), 299–307. https://doi.org/10.1109/TED.2017.2775341
  • Lu, B., Wang, D., Cui, Y., Li, Z., Guoqiang, C., Dong, L., Zhou, J., Wang, G., Miao, Y., Lv, Z., & Lu, H. (2021). A compact model for nanowire tunneling-fets. IEEE transactions on electron devices, 69(1), 419–426. https://doi.org/10.1109/TED.2021.3123933
  • Nobuyuki, I., Koji, M., & Takashi, N. (2016). Thermal stability of a hfo2/sio2 interface. Applied Physics Letters, 88(10), 101912. https://doi.org/10.1063/1.2182023
  • Rahi, S. B., Tayal, S., & Upadhyay, A. K. (2021). A review on emerging negative capacitance field effect transistor for low power electronics. Microelectronics Journal, 116, 105242. https://doi.org/10.1016/j.mejo.2021.105242
  • Saeidi, A., Rosca, T., Memisevic, E., Stolichnov, I., Cavalieri, M., Wernersson, L.-E., & Ionescu, A. (2020). Nanowire tunnel fet with simultaneously reduced subthermionic subthreshold swing and off-current due to negative capacitance and voltage pinning effects. Nano Letters, 20(5), 3255–3262. https://doi.org/10.1021/acs.nanolett.9b05356
  • Salahuddin, S., & Datta, S. (2008). Use of negative capacitance to provide voltage amplification for low power nanoscale devices. Nano Letters, 8(2), 405–410. https://doi.org/10.1021/nl071804g
  • Shaker, A. (2020). An analytical surface potential model accounting for the dual-modulation effects in tunnel fets. IEEE Transactions on Electron Devices, 67(7), 3014–3015.
  • Shikha, U. S., James, R. K., Pradeep, A., Baby, S., & Jacob, J. (2022). Threshold voltage modeling of negative capacitance double gate tfet. 2022 35th International Conference on VLSI Design and 2022 21st International Conference on Embedded Systems (VLSID), Bangalore, India (pp. 287–291).
  • Shikha, U. S., Krishna, B., Harikumar, H., Jacob, J., Pradeep, A., & James, R. K. (2023). Off current reduction in negative capacitance heterojunction TFET. Journal of Electronic Materials, 52(4), 2695–2707. https://doi.org/10.1007/s11664-023-10232-0
  • Silvaco Int. (2022). Atlas device simulation software. Santa Clara, CA, USA: ATLAS Device Simulation Software, Silvaco Int.
  • Wu, C., Huang, R., Huang, Q., Wang, C., Wang, J., & Wang, Y. (2014). An analytical surface potential model accounting for the dual- modulation effects in tunnel fets. IEEE Transactions on Electron Devices, 61(8), 2690–2696. https://doi.org/10.1109/TED.2014.2329372
  • Xu, H. (2018). Two dimensional analytical model for a negative capacitance double gate tunnel field effect transistor with ferroelectric gate dielectric. Journal of Semiconductors, 39(10), 104004.
  • Xu, H. F., & Guan, B. G. (2017). Two-dimensional analytical model for hetero-junction double-gate tunnel field-effect transistor with a stacked gate-oxide structure. Japanese Journal of Applied Physics, 56(5), 054201. https://doi.org/10.7567/JJAP.56.054201
  • Xu, P., Lou, H., Zhang, L., Yu, Z., & Lin, X. (2017). Compact model for double-gate tunnel fets with gateâĂŞdrain underlap. IEEE Transactions on Electron Devices, 64(12), 5242–5248.
  • Yang, Y., Tong, X., Yang, L.-T., Guo, P.-F., Fan, L., & Yeo, Y.-C. (2010). Tunneling field-effect transistor: Capacitance components and modeling. IEEE Electron Device Letters, 31(7), 752–754. https://doi.org/10.1109/LED.2010.2047240
  • Yu, Y. S., & Najam, F. (2021). Compact capacitance model of l-shape tunnel field-effect transistors for circuit simulation. Journal of Information and Communication Convergence Engineering, 19(4), 263–268.
  • Zhang, L., Lin, X., He, J., & Chan, M. (2012). An analytical charge model for double-gate tunnel fets. IEEE Transactions on Electron Devices, 59(12), 3217–3223. https://doi.org/10.1109/TED.2012.2217145
  • Zhao, Y., Liang, Z., Huang, Q., Chen, C., Yang, M., Sun, Z., Zhu, K., Wang, H., Liu, S., Liu, T., Peng, Y., Han, G., & Huang, R. (2019). A novel negative capacitance tunnel fet with improved subthreshold swing and nearly non-hysteresis through hybrid modulation. IEEE Electron Device Letters, 40(6), 989–992. https://doi.org/10.1109/LED.2019.2909410

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.