11
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Improved linear/nonlinear active disturbance rejection switching control for bearingless induction motor

ORCID Icon, ORCID Icon, & ORCID Icon
Received 24 Apr 2023, Accepted 20 Mar 2024, Published online: 15 May 2024

References

  • Alonge, F., Cirrincione, M., D’Ippolito, F., Pucci, M., & Sferlazza, A. (2017). Active disturbance rejection control of linear induction motor. IEEE Transactions on Industry Applications, 53(5), 4460–4471. https://doi.org/10.1109/TIA.2017.2697845
  • Chen, J., Fujii, Y., Johnson, M. W., Farhan, A., & Severson, E. L. (2021). Optimal design of the bearingless induction motor. IEEE Transactions on Industry Applications, 57(2), 1375–1388. https://doi.org/10.1109/tia.2020.3044970
  • Chiba, A., Akamatsu, D., Fukao, T., & Azizur Rahman, M. (2008). An improved rotor resistance identification method for magnetic field regulation in bearingless induction motor drives. IEEE Transactions on Industrial Electronics, 55(2), 852–860. https://doi.org/10.1109/TIE.2007.911197
  • Chiba, A., Power, D. T., & Rahman, M. A. (1991). Characteristics of a bearingless induction motor. IEEE Transactions on Magnetics, 27(6), 5199–5201. https://doi.org/10.1109/20.278786
  • Ding, H., Zhu, H., & Hua, Y. (2018). Optimization design of bearingless synchronous reluctance motor. IEEE Transactions on Applied Superconductivity, 28(3), 1–5. https://doi.org/10.1109/TASC.2018.2793192
  • Du, B., Wu, S., Han, S., & Cui, S. (2016). Application of linear active disturbance rejection controller for sensorless control of internal permanent-magnet synchronous motor. IEEE Transactions on Industrial Electronics, 63(5), 3019–3027. https://doi.org/10.1109/TIE.2016.2518123
  • Hiromi, T., Katou, T., Chiba, A., Rahman, M. A., & Fukao, T. (2007). A novel magnetic suspension-force compensation in bearingless induction-motor drive with squirrel-cage rotor. IEEE Transactions on Industry Applications, 43(1), 66–76. https://doi.org/10.1109/tia.2006.887310
  • Ho, S. L., Yang, S., & Ni, G. (2008). Incorporating a priori preferences in a vector PSO algorithm to find arbitrary fractions of the pareto front of multiobjective design problems. IEEE Transactions on Magnetics, 44(6), 1038–1041. https://doi.org/10.1109/TMAG.2007.914861
  • Li, Y., Shao, W., You, L., & Wang, B. (2013). An improved PSO algorithm and its application to UWB antenna design. IEEE Antennas and Wireless Propagation Letters, 12, 1236–1239. https://doi.org/10.1109/LAWP.2013.2283375
  • Lin, F., Chen, S., & Huang, M. (2010). Tracking control of thrust active magnetic bearing system via hermite polynomial-based recurrent neural network. IET Electric Power Applications, 4(9), 701–714. https://doi.org/10.1049/iet-epa.2010.0068
  • Lindblad, H. (2019). Black boxing BIM: The public client’s strategy in BIM implementation. Construction Management & Economics, 37(1), 1–12. https://doi.org/10.1080/01446193.2018.1472385
  • Liu, C., Luo, G., Duan, X., Chen, Z., Zhang, Z., & Qiu, C. (2019). Adaptive LADRC-based disturbance rejection method for electromechanical servo system. IEEE Transactions on Industry Applications, 56(1), 876–889. https://doi.org/10.1109/TIA.2019.2955664
  • Rodriguez, E. F., & Santisteban, J. A. (2011). An improved control system for a split winding bearingless induction motor. IEEE Transactions on Industrial Electronics, 58(8), 3401–3408. https://doi.org/10.1109/TIE.2010.2087302
  • Sandre-Hernandez, O., Morales-Caporal, R., Rangel-Magdaleno, J., Peregrina-Barreto, H., & Hernandez-Perez, J. N. (2015). Parameter identification of PMSMs using experimental measurements and a PSO algorithm. IEEE Transactions on Instrumentation & Measurement, 64(8), 2146–2154. https://doi.org/10.1109/TIM.2015.2390958
  • Sel, A., Güneş, U., & Kasnakoğlu, C. (2020). Design of output feedback sliding mode controller for SEPIC converter for robustness. International Journal of Electronics, 107(2), 239–249. https://doi.org/10.1080/00207217.2019.1643040
  • Severson, E., Gandikota, S., & Mohan, N. (2016). Practical implementation of dual-purpose No-voltage drives for bearingless motors. IEEE Transactions on Industry Applications, 52(2), 1509–1518. https://doi.org/10.1109/TIA.2015.2489609
  • Sun, X., Jin, Z., Cai, Y., Yang, Z., & Chen, L. (2020). Grey wolf optimization algorithm based state feedback control for a bearingless permanent magnet synchronous machine. IEEE Transactions on Power Electronics, 35(12), 13631–13640. https://doi.org/10.1109/TPEL.2020.2994254
  • Sun, X., Xue, Z., Zhu, J., Guo, Y., Yang, Z., Chen, L., & Chen, J. (2016). Suspension force modeling for a bearingless permanent magnet synchronous motor using maxwell stress tensor method. IEEE Transactions on Applied Superconductivity, 26(7), 1–5. https://doi.org/10.1109/TASC.2016.2599708
  • Victor, V. F., Quintaes, F. O., Lopes, J. S. B., Junior, L. D. S., Lock, A. S., & Salazar, A. O. (2012). Analysis and study of a bearingless AC motor type divided winding, based on a conventional squirrel cage induction motor. IEEE Transactions on Magnetics, 48(11), 3571–3574. https://doi.org/10.1109/TMAG.2012.2201142
  • Wang, G., Liu, R., Zhao, N., Ding, D., & Xu, D. (2018). Enhanced linear ADRC strategy for HF pulse voltage signal injection-based sensorless IPMSM drives. IEEE Transactions on Power Electronics, 34(1), 514–525. https://doi.org/10.1109/TPEL.2018.2814056
  • Wang, G., Yang, Z., Sun, X., Ding, Q., & Fang, W. (2023). Parameters optimisation on active disturbance rejection control of a bearingless induction motor. International Journal of Electronics, 110(12), 2137–2159. https://doi.org/10.1080/00207217.2022.2129815
  • Wang, Z., Zu, R., Duan, D., & Li, J. (2019). Tuning of ADRC for QTR in transition process based on NBPO hybrid algorithm. IEEE Access, 7, 177219–177240. https://doi.org/10.1109/access.2019.2957318
  • Wei, L., Han, S., Bokai, Z., Yang, Y., Chen, L., Qiao, W., & Han, S. (2017). A high-performance control scheme for reluctance type bearingless motors. International Journal of Applied Electromagnetics and Mechanics, 53(3), 537–549. https://doi.org/10.3233/jae-160088
  • Wu, D., & Chen, K. (2013). Frequency-domain analysis of nonlinear active disturbance rejection control via the describing function method. IEEE Transactions on Industrial Electronics, 60(9), 3906–3914. https://doi.org/10.1109/TIE.2012.2203777
  • Wu, D., Ren, F., Qiao, L., & Zhang, W. (2017). Active disturbance rejection controller design for dynamically positioned vessels based on adaptive hybrid biogeography-based optimization and differential evolution. ISA Transactions, 78, 56–65. https://doi.org/10.1016/j.isatra.2017.10.010
  • Yang, Z., Ding, Q., Sun, X., Lu, C., & Zhu, H. (2022). Speed sensorless control of a bearingless induction motor based on sliding mode observer and phase-locked loop. ISA Transactions, 123, 346–356. https://doi.org/10.1016/j.isatra.2021.05.041
  • Yang, Z., Ding, Q., Sun, X., Zhao, Q., & Luo, J. (2020). Analysis and optimisation of a bearingless induction motor’s suspension force and unbalanced magnetic pulling force mathematical model. IET Electric Power Applications, 14(7), 1247–1255. https://doi.org/10.1049/iet-epa.2019.0817
  • Yang, Z., Sun, C., Sun, X., & Sun, Y. (2022). An improved dynamic model for bearingless induction motor considering rotor eccentricity and load change. IEEE Transactions on Industrial Electronics, 69(4), 3439–3448. https://doi.org/10.1109/TIE.2021.3071712
  • Zhang, Y., & Yang, H. (2015). Model predictive flux control for induction motor drives. Proceedings of the CSEE, 35(3), 719–726. https://doi.org/10.13334/j.0258-8013.pcsee.2015.03.027
  • Zhu, H., & Gu, Z. (2020). Active disturbance rejection control of 5-degree-of-freedom bearingless permanent magnet synchronous motor based on fuzzy neural network inverse system. ISA Transactions, 101, 295–308. https://doi.org/10.1016/j.isatra.2020.01.028

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.