57
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Investigating renewable fuel combustion II: DNS of DME and n‐heptane ignition in a turbulent non‐homogeneous flow with high dissipation

, , &
Pages 419-432 | Published online: 11 Jul 2007

References

  • de Charentenay , J. , Thévenin , D. and Zamuner , B. 2002 . Comparison of direct numerical simulations of turbulent flames using compressible or low‐Mach number formulations . International Journal of Numerical Method in Fluids , 39 : 497 – 515 .
  • Chen , J.H. , Hawkes , E.R. , Sankaran , R. , Mason , S. and Im , H. 2006 . Direct numerical simulation of ignition front propagation in a constant volume with temperature inhomogeneities I. Fundamental analysis and diagnostic . Combustion and Flame , 145 : 128 – 144 .
  • Hawkes , E.R. , Sankaran , R. , Pébay , P. and Chen , J.H. 2006 . Direct numerical simulation of ignition front propagation in a constant volume with temperature inhomogeneities II. Parametric study . Combustion and Flame , 145 : 145 – 159 .
  • Sankaran , R. , Im , H. , Hawkes , E.R. and Chen , J.H. 2004 . The effects of non‐uniform temperature distribution on the ignition of a lean homogeneous hydrogen‐air mixture Proc. Combustion Institute
  • Echekki , T. and Chen , J.H. 2003 . Direct numerical simulation of autoignition in non‐homogeneous hydrogen‐air mixtures . Combustion and Flame , 134 : 169 – 191 .
  • Baum , M. , Poinsot , T.J. , Haworth , D.C. and Darabiha , N. 1994 . Direct numerical simulation of H2/O2/N2 flames with complex chemistry in two‐dimensional turbulent flows . Journal of Fluid Mechanics , 281 : 1 – 32 .
  • Wang , Y. and Rutland , C. 2004 . Effects of temperature and equivalence ratio on the ignition of n‐heptane fuel spray in turbulent flow in: Proc. Combustion Institute
  • Wang , Y. and Rutland , C. DNS study of the ignition of n‐heptane fuel spray under high pressure and lean conditions . J.o. P. Conference Series, Institute of Physics Publishing .
  • Viggiano , A. and Magi , V. 2004 . A 2‐D investigation of n‐heptane autoignition by means of direct numerical simulation . Combustion and Flame , 137 : 432 – 443 .
  • Hawkes , E.R. , Sankaran , R. , Sutherland , J.C. and Chen , J.H. Direct numerical simulation of turbulent combustion: fundamental insights towards predictive models . J.o.P. Conference Series, Institute of Physics Publishing .
  • Hawkes , E.R. and Chen , J.H. 2006 . Comparison of direct numerical simulation of lean premixed methane‐air flames with strained flame calculations . Combustion and Flame , 144 : 112 – 125 .
  • Bédat , B. , Egolfopoulos , F. and Poinsot , T.J. 1999 . Direct numerical simulation of heat release and NOx formation in turbulent nonpremixed flames . Combustion and Flame , 119 : 69 – 83 .
  • Luo , K.H. 1999 . Combustion effects on turbulence in a partially premixed supersonic diffusion flame . Combustion and Flame , 119 : 417 – 435 .
  • Le Ribault , C. , Le Penven , L. and Buffat , M. in press . LES of the compressed Taylor vortex flow using a finite volume/finite element method on unstructured grids . International Journal for Numerical Methods in Fluids ,
  • Rahman , M. M. and Siikonen , T. 2005 . An eddy viscosity model with near‐wall modifications . International Journal for Numerical Methods in Fluids , 49 : 975 – 997 .
  • Sergent , A. , Joubert , P. and Le Quéré , P. 2003 . Development of a local subgrid diffusivity model for Large‐Eddy Simulation of buoyancy‐driven flows: application to a square differentially heated cavity . Numerical Heat Transfer: Part A: Applications , 44 : 789 – 810 .
  • Sreedhara , S. and Huh , K.Y. 2005 . Assessment of closure schemes in second‐order conditional moment closure against DNS with extinction in ignition . Combustion and Flame , 143 : 386 – 401 .
  • Jenkins , K.W. , Klein , M. , Chakraborty , N. and Cant , R.S. 2006 . Effects of strain rate and curvature on the propagation of a spherical flame kernel in the thin‐reaction‐zones regime . Combustion and Flame , 145 : 415 – 434 .
  • Jiang , X. and Luo , K.H. 2000 . Combustion‐induced buoyancy effects of an axisymmetric reactive plume , Proc. Combustion Institute .
  • Jiang , X. and Luo , K.H. 2001 . Spatial DNS of flow transition of a rectangular buoyant reacting free‐jet . Journal of Turbulence , 2 : 1 – 15 .
  • Jiang , X. and Luo , K.H. 2000 . Spatial direct numerical simulation of the large vortical structures in forced plumes . Flow, Turbulence and Combustion , 64 : 43 – 69 .
  • Boulanger , J. , Liu , F. and Smallwood , G.J. Buoyancy‐driven structures on jet diffusion flames . Proc. Combustion Institute Canadian Section Spring Technical Meeting .
  • Wang , Y. 2005 . Direct numerical simulation of non‐premixed combustion with soot and thermal radiation PhD dissertation
  • Wu , Y. , Haworth , D.C. , Modest , M.F. and Cuenot , B. 2005 . Direct numerical simulation of turbulence/radiation interaction in premixed combustion systems , Proc. Combustion Institute .
  • Boulanger , J. , Vervisch , L. , Réveillon , J. and Ghosal , S. 2003 . Effects of heat release in laminar diffusion flames lifted on round jets . Combustion and Flame , 134 : 355 – 368 .
  • Kong , S.C. and Reitz , R.D. 2002 . Application of detailed chemistry and CFD for predicting direct injection HCCI engine combustion and emissions , Proc. Combustion Institute .
  • Kong , S.C. and Reitz , R.D. 2003 . Numerical study of premixed HCCI engine combustion and its sensitivity to computational mesh and model uncertainties . Combustion Theory and Modelling , 7 : 417 – 433 .
  • Hinze , J.O. 1975 . Turbulence , New York : McGraw‐Hill .
  • Kuo , K. 1986 . Principles of Combustion , New York : Wiley .
  • Kee , R.J. , Dixon‐Lewis , G. , Warnatz , J. , Coltrin , M.E. and Miller , J.A. 1986 . A Fortran computer code package for the evaluation of gas‐phase, multicomponent transport properties Technical report, SAND86‐8246, Sandia National Laboratories
  • Kee , R.J. , Rupley , F.M. and Miller , J.A. 1989 . Chemkin‐II: a Fortran chemical kinetics package for the analysis of gas‐phase chemical kinetics Technical report SAND89‐8009B, UC‐706, Sandia National Laboratories
  • Lele , S. 1992 . Compact finite difference schemes with spectral like resolution . Journal of Computational Physics , 103 : 16 – 42 .
  • Wray , A. 1990 . “ Minimal storage time – advancement schemes of spectral methods ” . Stanford, CA, , USA : Technical report, Center for Turbulence Research, Stanford University .
  • Réveillon , J. 1996 . Simulation dynamique des grandes structures appliquée aux flammes turbulentes non‐prémélangées , Rouen, , France : Université de Rouen . PhD thesis
  • Vervisch‐Guichard , L. 1999 . Développement d’outils numériques dédiés à l’étude de la combustion turbulente , Rouen, , France : Université de Rouen . PhD thesis
  • Nordin , N. and Golovitchev , V. Numerical evaluation of n‐heptane spray combustion at diesel‐like conditions . Proc. The 7th International KIVA Users Meetings, SAE Congress .
  • Golovitchev , V. , Nordin , N. and Chomiak , J. Numerical evaluation of dual oxygenated fuel setup for DI diesel application . Proc. SAE International Spring Fuels & Lubricants Meeting & Exposition .
  • Kundu , K.P. , Penko , P.F. and Yang , S.L. 1998 . Simplified Jet‐A/Air combustion mechanisms for calculation of NOx emissions Proc. 34th AIAA/SME/SAE/ASEE Joint Propulsion Conference and Exhibit
  • Kundu , K.P. , Penko , P.F. and VanOverbeke , T.J. A practical mechanism for computing combustion in gas turbine engines . in: Proc. 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit .
  • Lee , C.‐M. , Kundu , K. and Acosta , W. Jet‐A reaction mechanism study for combustion application . in: Proc. 27th AIAA/SAE/ASME/ASEE Joint Propulsion Conference and Exhibit .
  • Sinha , S. and Agarwal , A.K. Combustion characteristics of rice bran oil derived biodiesel in a transportation diesel engine . Proc. ASME‐ICES 2006 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.