398
Views
22
CrossRef citations to date
0
Altmetric
Research Article

Biosorption characteristics of methylene blue dye by two fungal biomasses

, , , , , , , ORCID Icon & show all

References

  • Bharti, V., Vikrant, K., Goswami, M., Tiwari, H., Sonwani, R.K., Lee, J., Tsang, D.C.W., Kim, K.-H., Saeed, M., Kumar, S., Rai, B.N., Giri, R.S., and Singh, B.S., 2019, Biodegradation of methylene blue dye in a batch and continuous mode using biochar as packing media. Environmental Research 171, 356–364. doi:10.1016/j.envres.2019.01.051
  • Rangabhashiyam, S., Sujata, L., and Balasubramanian, P., 2018, Biosorption characteristics of methylene blue and malachite green from simulated wastewater onto Carica papaya wood biosorbent. Surfaces and Interfaces 10, 197–215. doi:10.1016/j.surfin.2017.09.011
  • Mahmoud, M.S., Mostafa, M.K., Mohamed, S.A., Sobhy, N.A., and Nasr, M., 2017, Bioremediation of red azo dye from aqueous solutions by Aspergillus niger strain isolated from textile wastewater. Journal of Environmental Chemical Engineering 5(1), 547–554. doi:10.1016/j.jece.2016.12.030
  • Mokhtar, N., Aziz, E.A., Aris, A., Ishak, W.F.W., and Ali, N.S.M., 2017, Biosorption of azo-dye using marine macro-alga of Euchema Spinosum. Journal of Environmental Chemical Engineering 5, 5721–5731. doi:10.1016/j.jece.2017.10.043
  • Abdallah, R. and Taha, S., 2012, Biosorption of methylene blue from aqueous solution by nonviable Aspergillus fumigatus. Chemical Engineering Journal 195–196, 69–76. doi:10.1016/j.cej.2012.04.066
  • Isik, Z., Arikan, E.B., Bouras, H.D., and Dizge, N., 2019, Bioactive ultrafiltration membrane manufactured from Aspergillus carbonarius M333 filamentous fungi for treatment of real textile wastewater. Bioresource Technology Reports 5, 212–219. doi:10.1016/j.biteb.2019.01.020
  • Daneshvar, E., Vazirzadeh, A., and Bhatnagar, A., 2019, Biosorption of methylene blue dye onto three different marine macroalgae: Effects of different parameters on isotherm, kinetic and thermodynamic. Iranian Journal of Science and Technology, Transactions A: Science 43, 2743–2754. doi:10.1007/s40995-019-00764-8
  • Arunarani, A., Chandran, P., Ranganathan, B.V., Vasanthi, N.S., and Khan, S.S., 2013, Bioremoval of basic violet 3 and acid blue 93 by Pseudomonas putida and its adsorption isotherms and kinetics. Colloids and Surfaces B: Biointerfaces 102, 379–384. doi:10.1016/j.colsurfb.2012.08.049
  • Contreras, M., Grande-Tovar, C.D., Vallejo, W., and Chaves-López, C., 2019, Bio-removal of methylene blue from aqueous solution by Galactomyces geotrichum KL20A. Water 11(2), 282. doi:10.3390/w11020282
  • Tonato, D., Drumm, F.C., Grassi, P., Georgin, J., Gerhardt, A.E., Dotto, G.L., and Mazutti, M.A., 2019, Residual biomass of Nigrospora sp. from process of the microbial oil extraction for the biosorption of procion red H–E7B dye. Journal of Water Process Engineering 31, 100818. doi:10.1016/j.jwpe.2019.100818
  • Marcharchand, S. and Ting, A.S.Y., 2017, Trichoderma asperellum cultured in reduced concentrations of synthetic medium retained dye decolourization efficacy. Journal of Environmental Management 203, 542–549. doi:10.1016/j.jenvman.2017.06.068
  • Kabbout, R. and Taha, S., 2014, Biodecolorization of textile dye effluent by biosorption on fungal biomass materials. Physics Procedia 55, 437–444. doi:10.1016/j.phpro.2014.07.063
  • Casas, N., Parella, T., Vincent, T., Caminal, G., and Sarra, M., 2014, Metabolites from the biodegradation of triphenyl methane dyes by Trametes versicolor or laccase. Chemosphere 75, 1344–1349. doi:10.1016/j.chemosphere.2009.02.029
  • Hassan, I.F. and Ai-Jawhari, H., 2015, Decolorization of methylene blue and crystal violet by some filamentous fungi. International Journal of Environmental Bioremediation & Biodegradation 3(2), 62–65.
  • Chen, S.H. and Ting, A.S.Y., 2015a, Biodecolorization and biodegradation potential ofrecalcitrant triphenyl methane dyes by Coriolopsis sp. isolated from compost. Journal of Environmental Management 150, 274–280. doi:10.1016/j.jenvman.2014.09.014
  • Chen, S.H. and Ting, A.S.Y., 2015, Biosorption and biodegradation potential of triphenylmethane dyes by newly discovered Penicillium simplicissimum isolated from indoor wastewater sample. International Biodeterioration & Biodegradation 103, 1–7. doi:10.1016/j.ibiod.2015.04.004
  • Li, J.F., Rupa, E.J., Hurh, J., Huo, Y., Chen, L., Hana, Y., Ahn, J.C., Park, J.K., Lee, H.A., Mathiyalagan, R., and Yang, D.-C., 2019, Cordyceps militaris fungus mediated Zinc Oxide nanoparticles for the photocatalytic degradation of Methylene blue dye. Optik 183, 691–697. doi:10.1016/j.ijleo.2019.02.081
  • Bouras, H.D., Yeddou, A.R., Bouras, N., Hellel, D., Holtz, M.D., Sabaou, N., Chergui, A., and Nadjemi, B., 2017, Biosorption of Congo red dye by Aspergillus carbonarius M333 and Penicillium glabrum Pg1: Kinetics, equilibrium and thermodynamic studies. Journal of the Taiwan Institute of Chemical Engineers 80, 915–923. doi:10.1016/j.jtice.2017.08.002
  • Bouras, H.D., Isik, Z., Arikan, E.B., Bouras, N., Chergui, A., Yatmaz, H.C., and Dizge, N., 2019, Photocatalytic oxidation of azo dye solutions by impregnation of ZnO on fungi. Biochemical Engineering Journal 146, 150–159. doi:10.1016/j.bej.2019.03.014
  • Naskar, A. and Majumder, R., 2017, Understanding the adsorption behaviour of acid yellow 99 on Aspergillus niger biomass. Journal of Molecular Liquids 242(1), 892–899. doi:10.1016/j.molliq.2017.05.155
  • Zhao, J., Zou, Z., Ren, R., Sui, X., Mao, Z., Xu, H., and Wang, B., 2018, Chitosan adsorbent reinforced with citric acid modified β–cyclodextrin for highly efficient removal of dyes from reactive dyeing effluents. European Polymer Journal 108, 212–218. doi:10.1016/j.eurpolymj.2018.08.044
  • Zazycki, M.A., Godinho, M., Perondi, D., Foletto, E.L., Collazzo, G.C., and Dotto, G.L., 2018, New biochar from pecan nutshells as an alternative adsorbent for removing reactive red 141 from aqueous solutions. Journal of Cleaner Production 171, 57–65. doi:10.1016/j.jclepro.2017.10.007
  • Fontoura, J.T., Rolim, G.S., Mella, B., Farenzena, M., and Gutterres, M., 2017, Defatted microalgal biomass as biosorbent for the removal of Acid Blue 161 dye from tannery effluent. Journal of Environmental Engineering 5, 5076–5084.
  • Ortiz-Monsalve, S., Dornelles, J., Poll, E., Ramirez-Castrillon, M., Valente, P., and Gutterres, M., 2017, Biodecolourisation and biodegradation of leather dyes by a native isolate of Trametes villosa. Process Safety and Environment Protection 109, 437–451. doi:10.1016/j.psep.2017.04.028
  • Daneshvar, E., Vazirzadeh, A., Niazi, A., Sillanpää, M., and Bhatnagar, A., 2017, A comparative study of methylene blue biosorption using different modified brown, red and green macroalgae – Effect of pretreatment. Chemical Engineering Journal 307, 435–446. doi:10.1016/j.cej.2016.08.093
  • Sharma, P., Saikia, B.K., and Das, M.R., 2014, Removal of methyl green dye molecule from aqueous system using reduced graphene oxide as an efficient adsorbent: Kinetics, isotherm and thermodynamic parameters. Colloids and Surfaces A: Physicochemical and Engineering Aspects 457, 125–133. doi:10.1016/j.colsurfa.2014.05.054
  • Mathialagan, T. and Viraraghavan, T., 2009, Biosorption of pentachlorophenol from aqueous solutions by a fungal biomass. Bioresource Technology 100, 549–558. doi:10.1016/j.biortech.2008.06.054
  • Üner, O., 2019, Hydrogen storage capacity and methylene blue adsorption performance of activated carbon produced from Arundo donax. Materials Chemistry Physics 237, 121858. doi:10.1016/j.matchemphys.2019.121858
  • Shaban, M., Abukhadra, M.R., Khan, A.A.P., and Jibali, B.M., 2018, Removal of Congo red, methylene blue and Cr (VI) ions from water using natural serpentine. Journal of the Taiwan Institute of Chemical Engineers 82, 102–116. doi:10.1016/j.jtice.2017.10.023
  • Dahri, M.K., Kooh, M.R.R., and Lim, L.B.L., 2015, Application of Casuarina equisetifolia needle for the removal of methylene blue and malachite green dyes from aqueous solution. Alexandria Engineering Journal 54, 1253–1263. doi:10.1016/j.aej.2015.07.005
  • Deniz, F. and Kepekci, R.A., 2017, Bioremoval of Malachite green from water sample by forestry waste mixture as potential biosorbent. Microchemical Journal 132, 172–178. doi:10.1016/j.microc.2017.01.015
  • Bayramoglu, G. and Arica, M.Y., 2018, Adsorption of Congo Red dye by native amine and carboxyl modified biomass of Funalia trogii: Isotherms, kinetics and thermodynamics mechanisms. Korean Journal of Chemical Engineering 35(3), 1–9. doi:10.1007/s11814-018-0033-9
  • Mahmoodi, N.M., Taghizadeh, M., and Taghizadeh, A., 2019, Activated carbon/metal-organic framework composite as a bio-based novel green adsorbent: Preparation and mathematical pollutant removal modelling. Journal of Molecular Liquids 277, 310–322. doi:10.1016/j.molliq.2018.12.050
  • Daoud, M., Benturki, O., Kecira, Z., Girods, P., and Donnot, A., 2017, Removal of reactive dye (BEZAKTIV Red S-MAX) from aqueous solution by adsorption onto activated carbons prepared from date palm rachis and jujube stones. Journal of Molecular Liquids 243, 799–809. doi:10.1016/j.molliq.2017.08.093
  • Langmuir, I., 1918, The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society 40(9), 1361–1403. doi:10.1021/ja02242a004
  • Dahlan, N.A., Lee, L.W., Pushpamalar, J., and Ng, S.L., 2019, Adsorption of methylene blue onto carboxymethyl sago pulp-immobilized sago waste hydrogel beads. International Journal of Environmental Science and Technology 16, 2047–2058. doi:10.1007/s13762-018-1789-5
  • Freundlich, H.M.F., 1906, Über die adsorption in LÖsungen. The Journal of Physical Chemistry C 57, 385–470.
  • Tempkin, M.J. and Pyzhev, V., 1940, Kinetics of ammonia synthesis on promoted iron catalysis. Acta Physiochimica URSS 12, 327–356.
  • Dubinin, M.M. and Radushkevich, L.V., 1947, Proceedings of the academy of sciences of the USSR. Physical Chemistry 55, 331–333.
  • Sharma, S., Hasan, A., Kumar, N., and Pandey, L.M., 2018, Removal of methylene blue dye from aqueous solution using immobilized Agrobacterium fabrum biomass along with iron oxide nanoparticles as biosorbent. Environmental Science and Pollution Research 25(22), 21605–21615. doi:10.1007/s11356-018-2280-z
  • Bagheri, A.R., Ghaedi, M., Asfaram, A., Jannesar, R., and Goudarzi, A., 2016, Design andconstruction of nanoscale material for ultrasonic assisted adsorption of dyes: Application of derivative spectrophotometry and experimental design methodology. Ultrasonics Sonochemistry 35, 112–123. doi:10.1016/j.ultsonch.2016.09.008
  • Fu, Y. and Viraraghavan, T., 2000, Removal of a dye from an aqueous solution by the fungus Aspergillus niger. Water Quality Research Journal of Canada 35, 95–111. doi:10.2166/wqrj.2000.006
  • Acemioglu, B., Kertmen, M., Digrak, M., and Alma, M.H., 2010, Use of Aspergillus wentii for biosorption of methylene blue from aqueous solution. African Journal of Biotechnology 9(6), 874–881. doi:10.5897/AJB09.752
  • Barka, N., Assabane, A., Aît Ichou, Y., and Nounah, A., 2006, Decantamination of textile wastewater by powdered activated carbon. Journal of Applied Sciences 6(3), 692–695. doi:10.3923/jas.2006.692.695
  • Annadurai, G., Juang, R.S., and Lee, D.J., 2002, Use of cellulose-based wastes for adsorption of dyes from aqueous solutions. Journal of Hazardous Materials B 92, 263–274. doi:10.1016/S0304-3894(02)00017-1
  • Dotto, G.L., Santos, J.M.N., Rodrigues, I.L., Rosa, R., Pavan, F.A., and Lima, E.C., 2015, Adsorption of methylene blue by ultrasonic surface modified chitin. Journal of Colloid and Interface Science 446, 133–140. doi:10.1016/j.jcis.2015.01.046
  • Ncibi, M.C., Mahjoub, B., and Seffen, M., 2007, Kinetic and equilibrium studies of methylene blue biosorption by Posidonia oceanica (L.) fibres. Journal of Hazardous Materials 139, 280–285. doi:10.1016/j.jhazmat.2006.06.029
  • Runping, H., Yuanfeng, W., Pan, H., Jie, S., Jian, Y., and Yongsen, L., 2006, Removal of methylene blue from aqueous solution by chaff in batch mode. Journal of Hazardous Materials 137, 550–557. doi:10.1016/j.jhazmat.2006.02.029
  • Khattri, S.D. and Singh, M.K., 1999, Colour removal from dye wastewater using sugar cane dust as an adsorbent. Adsorption Science &Technology 17, 269–282. doi:10.1177/026361749901700404

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.