105
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Performance evaluation of plant microbial fuel cell with Epipremnum aureum plant using composite anode made of corn cob and carbon rod

, ORCID Icon &

References

  • Strik, D.P., Timmers, R.A., Helder, M., Steinbusch, K.J., Hamelers, H.V., and Buisman, C.J., 2011, Microbial solar cells: Applying photosynthetic and electrochemically active organisms. Trends in Biotechnology 29, 41–49. doi: 10.1016/j.tibtech.2010.10.001
  • Strik, D.P., Hamelers, H.V.M., Snel, J.F., and Buisman, C.J., 2008, Green electricity production with living plants and bacteria in a fuel cell. International Journal of Energy Research 32, 870–876. doi: 10.1002/er.1397
  • Gowtham, R. and Sundar, K.U.S., 2015, Generating current from plants plant-e technology. International Journal of Recent Advances in Engineering & Technology 3, 2347–2812.
  • Rahimnejad, M., Adhami, A., Darvari, S., Zirepour, A., and Oh, S.E., 2015, Microbial fuel cell as new technology for bioelectricity generation: A review. Alexandria Engineering Journal 54, 745–756. doi: 10.1016/j.aej.2015.03.031
  • Moqsud, M.A., Yoshitake, J., Bushra, Q.S., Hyodo, M., Omine, K., and Strik, D., 2015, Compost in plant microbial fuel cell for bioelectricity generation. Waste Management 36, 63–69. doi: 10.1016/j.wasman.2014.11.004
  • Kabutey, F.T., Zhao, Q., Zhao, W.L., Ding, J., Antwi, P., Frank, K.Q., and Wang, W., 2019, An overview of plant microbial fuel cells (PMFCs): Configurations and applications. Renewable and Sustainable Energy Reviews 110, 402–414. doi: 10.1016/j.rser.2019.05.016
  • Sarma, P.J. and Mohanty, K., 2018, Epipremnum aureum and Dracaena braunii as indoor plants for enhanced bioelectricity generation in a plant microbial fuel cell with electrochemically modified carbon fiber brush anode. Journal of Bioscience and Bioengineering 126, 1–7. doi: 10.1016/j.jbiosc.2018.03.009
  • Somil, T. and Bhaskar, D., 2020, Performance evaluation of microbial fuel cell with sewage wastewater and RO concentrate using composite anode made of Luffa Aegyptiaca. Environmental Progress & Sustainable Energy 40, e13504.
  • Sonu, K., Sogani, M., Syed, Z., Dongre, A., and Sharma, G., 2020, Effect of corn cob derived biochar on microbial electroremediation of dye wastewater and bioenergy generation. ChemistrySelect 5, 9793–9798. doi: 10.1002/slct.202002652
  • Helder, M., Strik, D.P.B.T.B., Hamelers, H.V.M., Kuhn, A.J., Blok, C., and Buisman, C.J.N., 2010, Concurrent bio-electricity and biomass production in three plant-microbial fuel cells using Spartina anglica, Arundinellaanomala and Arundo donax. Bioresource Technology 101, 3541–3547. doi: 10.1016/j.biortech.2009.12.124
  • Helder, M., Strik, D.P., Timmers, R.A., Raes, S.M., Hamelers, H.V., and Buisman, C.J., 2013, Resilience of roof-top plant-microbial fuel cells during Dutch winter. Biomass and Bioenergy 51,1–7.
  • Sonu, K., Sogani, M., Syed, Z., Dongre, A., and Sharma, G., 2021, Improved decolorization of dye wastewater and enhanced power output in the electrically stacked microbial fuel cells with H2O2 modified Corn cob anodes. Environmental Progress & Sustainable Energy. doi:10.1002/ep.13638
  • Sonu, K. and Das, B., 2016, Comparison of the output voltage characteristics pattern for sewage sludge, kitchen waste and cow dung in single chamber single electrode microbial fuel cell. Indian Journal of Science and Technology 9, 1–5. doi: 10.17485/ijst/2016/v9i30/99177
  • Wetser, K., Dieleman, K., Buisman, C., and Strik, D., 2017, Electricity from wetlands: Tubular plant microbial fuels with silicone gas-diffusion biocathodes. Applied Energy 185, 642–649. doi: 10.1016/j.apenergy.2016.10.122
  • Timmers, R.A., Strik, D.P., Hamelers, H.V., and Buisman, C.J., 2010, Long-term performance of a plant microbial fuel cell with Spartina anglica. Applied Microbiology and Biotechnology 86, 973–981. doi: 10.1007/s00253-010-2440-7
  • Timmers, R.A., Strik, D.P., Hamelers, H.V., and Buisman, C.J., 2013, Electricity generation by a novel design tubular plant microbial fuel cell. Biomass and Bioenergy 51, 60–67. doi: 10.1016/j.biombioe.2013.01.002
  • Helder, M., Strik, D.P., Hamelers, H.V., and Buisman, C.J., 2012, The flat-plate plant-microbial fuel cell: The effect of a new design on internal resistances. Biotechnology for Biofuels 5, 1–11. doi: 10.1186/1754-6834-5-70
  • Goto, Y., Yoshida, N., Umeyama, Y., Yamada, T., Tero, R., and Hiraishi, A., 2015, Enhancement of electricity production by graphene oxide in soil microbial fuel cells and plant microbial fuel cells. Frontiers in Bioengineering and Biotechnology 3, 42. doi: 10.3389/fbioe.2015.00042
  • Tang, Q., Katsumi, T., Inui, T., and Li, Z., 2014, Membrane behavior of bentonite-amended compacted clay. Soils and Foundations 54, 329–344. doi: 10.1016/j.sandf.2014.04.019
  • Manolopoulou, E., Varzakas, T., and Petsalaki, A., 2016, Chlorophyll determination in green pepper using two different extraction methods. Current Research in Nutrition and Food Science Journal 4, 52–60. doi: 10.12944/CRNFSJ.4.Special-Issue1.05
  • Wetser, K., Sudirjo, E., Buisman, C.J., and Strik, D.P., 2015, Electricity generation by a plant microbial fuel cell with an integrated oxygen reducing biocathode. Applied Energy 137, 151–157. doi: 10.1016/j.apenergy.2014.10.006
  • Liu, S., Song, H., Li, X., and Yang, F., 2013, Power generation enhancement by utilizing plant photosynthate in microbial fuel cell coupled constructed wetland system. International Journal of Photoenergy 2013(172010), 10. doi: 10.1155/2013/172010
  • ASTM, D., 2008, Standard Test Method for Ash in the Analysis Sample of Coal and Coke from Coal (West Conshohocken: ASTM International).
  • Sonu, K., Sogani, M., Syed, Z., Dongre, A., and Sharma, G., 2020, Enhanced decolorization and treatment of textile dye wastewater through adsorption on acid modified corncob derived biochar. ChemistrySelect 5, 12287–12297. doi: 10.1002/slct.202003156
  • Deng, H., Chen, Z., and Zhao, F., 2012, Energy from plants and microorganisms: Progress in plant–microbial fuel cells. ChemSusChem 5, 1006–1011. doi: 10.1002/cssc.201100257
  • Sonu, K., Syed, Z., and Sogani, M., 2020, Up-scaling microbial fuel cell systems for the treatment of real textile dye wastewater and bioelectricity recovery. International Journal of Environmental Studies 77, 692–702. doi: 10.1080/00207233.2020.1736438

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.