107
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Natural Thermo-Bio Convection of gyrotactic micro-organisms in a square cavity with two heaters inside: application to ocean ecosystems

, , &

References

  • Pedley, T.J. and Kessler, J.O., 1992, Hydrodynamic phenomena in suspensions of swimming microorganisms. Annual Review of Fluid Mechanics 24(1), 313–358. doi: 10.1146/annurev.fl.24.010192.001525
  • Pedley, T.J. and Kessler, J.O., 1990, A new continuum model for suspensions of gyrotactic micro-organisms. Journal of Fluid Mechanics 212, 155–182. doi: 10.1017/S0022112090001914
  • Hwang, Y. and Pedley, T.J., 2014, Bioconvection under uniform shear: Linear stability analysis. Journal of Fluid Mechanics 738, 522–562. doi: 10.1017/jfm.2013.604
  • Hwang, Y. and Pedley, T.J., 2014, Stability of downflowing gyrotactic microorganism suspensions in a two-dimensional vertical channel. Journal of Fluid Mechanics 749, 750–777. doi: 10.1017/jfm.2014.251
  • Häder, D.P. and Hemmersbach, R., 2018, Gravitaxis in flagellates and ciliates. In: B. Markus, M. Böhmer, D.P. Häder, R. Hemmersbach, and K. Palme Eds Gravitational Biology (Cham: Springer), pp. 27–45.
  • Roberts, A.M. and Deacon, F.M., 2002, Gravitaxis in motile micro-organisms: The role of fore–aft body asymmetry. Journal of Fluid Mechanics 452, 405–423. doi: 10.1017/S0022112001006772
  • Häder, D.P., 1999, Gravitaxis in unicellular microorganisms. Advances in Space Research 24(6), 843–850. doi: 10.1016/S0273-1177(99)00965-5
  • Balla, C.S. and Naikoti, K., 2019, Numerical solution of MHD bioconvection in a porous square cavity due to oxytactic microorganisms. Applications and Applied Mathematics: An International Journal (AAM) 144, 6.
  • Hillesdon, A.J. and Pedley, T.J., 1996, Bioconvection in suspensions of oxytactic bacteria: Linear theory. Journal of Fluid Mechanics 324, 223–259. doi: 10.1017/S0022112096007902
  • Kuznetsov, A.V., 2011, Nanofluid bioconvection in water-based suspensions containing nanoparticles and oxytactic microorganisms: Oscillatory instability. Nanoscale Research Letters 6(1), 1–13. doi: 10.1186/1556-276X-6-100
  • Kuznetsov, A.V., 2006, The onset of thermo-bioconvection in a shallow fluid saturated porous layer heated from below in a suspension of oxytactic microorganisms. European Journal of Mechanics-B/Fluids 25(2), 223–233. doi: 10.1016/j.euromechflu.2005.06.003
  • Alloui, Z., Nguyen, T.H., and Bilgen, E., 2007, Numerical investigation of thermo-bioconvection in a suspension of gravitactic microorganisms. International Journal of Heat and Mass Transfer 50(7–8), 1435–1441. doi: 10.1016/j.ijheatmasstransfer.2006.09.008
  • Taheri, M. and Bilgen, E., 2008, Thermo-bioconvection in a suspension of gravitactic micro-organisms in vertical cylinders. International Journal of Heat and Mass Transfer 51(13–14), 3535–3547. doi: 10.1016/j.ijheatmasstransfer.2007.10.023
  • Ahmed, S.E., Oztop, H.F., Mansour, M.A., and Abu-Hamdeh, N., 2018, Magnetohydrodynamic mixed thermo-bioconvection in porous cavity filled by oxytactic microorganisms. Thermal Science 22(6 Part B), 2711–2721. doi: 10.2298/TSCI161005319A
  • Mansour, M.A., Rashad, A.M., Mallikarjuna, B., Hussein, A.K., Aichouni, M., and Kolsi, L., 2019, MHD mixed bioconvection in a square porous cavity filled by gyrotactic microorganisms. International Journal of Heat and Technology 37(2), 433–445. doi: 10.18280/ijht.370209
  • Sheremet, M.A. and Pop, I., 2014, Thermo-bioconvection in a square porous cavity filled by oxytactic microorganisms. Transport in Porous Media 103(2), 191–205. doi: 10.1007/s11242-014-0297-4
  • Avramenko, A.A. and Kuznetsov, A.V., 2006, The onset of convection in a suspension of gyrotactic microorganisms in superimposed fluid and porous layers: Effect of vertical throughflow. Transport in Porous Media 65(2), 159–176. doi: 10.1007/s11242-005-6086-3
  • Chamkha, A.J., Rashad, A.M., Kameswaran, P.K., and Abdou, M.M.M., 2017, Radiation effects on natural bioconvection flow of a nanofluid containing gyrotactic microorganisms past a vertical plate with streamwise temperature variation. Journal of Nanofluids 6(3), 587–595. doi: 10.1166/jon.2017.1351
  • Chamkha, A.J., Nabwey, H.A., Abdelrahman, Z.M.A., and Rashad, A.M., 2019, Mixed bioconvective flow over a wedge in porous media drenched with a nanofluid. Journal of Nanofluids 8(8), 1692–1703. doi: 10.1166/jon.2019.1728
  • Ahmad, S., Ashraf, M., and Ali, K., 2020, Bioconvection due to gyrotactic microbes in a nanofluid flow through a porous medium. Heliyon 6(12), e05832. doi: 10.1016/j.heliyon.2020.e05832
  • Ferdows, M., Zaimi, K., Rashad, A.M., and Nabwey, H.A., 2020, MHD bioconvection flow and heat transfer of nanofluid through an exponentially stretchable sheet. Symmetry 12(5), 692. doi: 10.3390/sym12050692
  • Gholamalipour, P., Siavashi, M., and Doranehgard, M.H., 2019, Eccentricity effects of heat source inside a porous annulus on the natural convection heat transfer and entropy generation of Cu-water nanofluid. International Communications in Heat and Mass Transfer 109, 104367. doi: 10.1016/j.icheatmasstransfer.2019.104367
  • Dogonchi, A.S., Waqas, M., Gulzar, M.M., Hashemi-Tilehnoee, M., Seyyedi, S.M., and Ganji, D.D., 2019, Simulation of Fe3O4-H2O nanoliquid in a triangular enclosure subjected to Cattaneo–Christov theory of heat conduction. International Journal of Numerical Methods for Heat & Fluid Flow, Vol 29(11), 4430–4444. doi: 10.1108/HFF-01-2019-0031
  • Lin, W. and Armfield, S.W., 2019, Natural convection boundary-layer flow on an evenly heated vertical plate with time-varying heating flux in a stratified Pr< 1 fluid. Numerical Heat Transfer, Part A: Applications 766, 393–419.
  • Dutta, S., Goswami, N., Pati, S., and Biswas, A.K., 2021, Natural convection heat transfer and entropy generation in a porous rhombic enclosure: Influence of non-uniform heating. Journal of Thermal Analysis and Calorimetry 144(4), 1493–1515. doi: 10.1007/s10973-020-09634-7
  • Bhowmick, D., Randive, P.R., Pati, S., Agrawal, H., Kumar, A., and Kumar, P., 2020, Natural convection heat transfer and entropy generation from a heated cylinder of different geometry in an enclosure with non-uniform temperature distribution on the walls. Journal of Thermal Analysis and Calorimetry 141(2), 839–857. doi: 10.1007/s10973-019-09054-2
  • Hashemi-Tilehnoee, M., Dogonchi, A.S., Seyyedi, S.M., Chamkha, A.J., and Ganji, D.D., 2020, Magnetohydrodynamic natural convection and entropy generation analyses inside a nanofluid-filled incinerator-shaped porous cavity with wavy heater block. Journal of Thermal Analysis and Calorimetry 141(5), 2033–2045.
  • Sheremet, M.A., Groşan, T., and Pop, I., 2015, Steady-state free convection in right-angle porous trapezoidal cavity filled by a nanofluid: Buongiorno’s mathematical model. European Journal of Mechanics-B/Fluids 53, 241–250. doi: 10.1016/j.euromechflu.2015.06.003
  • Saleh, H., Roslan, R., and Hashim, I., 2011, Natural convection heat transfer in a nanofluid-filled trapezoidal enclosure. International Journal of Heat and Mass Transfer 54(1–3), 194–201. doi: 10.1016/j.ijheatmasstransfer.2010.09.053
  • Teamah, M.A. and El-Maghlany, W.M., 2012, Augmentation of natural convective heat transfer in square cavity by utilizing nanofluids in the presence of magnetic field and uniform heat generation/absorption. International Journal of Thermal Sciences 58, 130–142. doi: 10.1016/j.ijthermalsci.2012.02.029
  • Zhou, L., Armfield, S.W., Williamson, N., Kirkpatrick, M.P., and Lin, W., 2020, Natural convection in a cavity with time-varying thermal forcing on a sidewall. International Journal of Heat and Mass Transfer 150, 119234. doi: 10.1016/j.ijheatmasstransfer.2019.119234
  • Lin, W. and Armfield, S.W., 2020, Prandtl number scalings for unsteady natural convection boundary-layer flow on an evenly heated vertical plate in a homogeneous Pr> 1 fluid. Numerical Heat Transfer, Part A: Applications 77(6), 619–631. doi: 10.1080/10407782.2020.1713639
  • Rehman, K.U., Algehyne, E.A., Shahzad, F., Sherif, E.S.M., and Chu, Y.M., 2021, On thermally corrugated porous enclosure (TCPE) equipped with casson liquid suspension: Finite element thermal analysis. Case Studies in Thermal Engineering 25, 100873. doi: 10.1016/j.csite.2021.100873
  • Mahdy, A., Ahmed, S.E., and Mansour, M.A., 2021, Entropy generation for MHD natural convection in enclosure with a micropolar fluid saturated porous medium with Al2O3Cu water hybrid nanofluid. Nonlinear Analysis: Modelling and Control 26(6), 1123–1143. doi: 10.15388/namc.2021.26.24940
  • Rehman, K.U., Shatanawi, W., Zahri, M., Sherif, E.S.M., Junaedi, H., and Lv, Y.P., 2021, Thermal analysis on uniformly heated diamond obstruction in convective liquid suspension. Case Studies in Thermal Engineering 26, 101062. doi: 10.1016/j.csite.2021.101062
  • Abdelmalek, Z., Rehman, K.U., Al-Mdallal, Q.M., Al-Kouz, W., and Malik, M.Y., 2020, Thermal influence of homogeneously heated Y-shaped flipper on flowing stream in an unwavering rectangular domain. Case Studies in Thermal Engineering 21, 100715. doi: 10.1016/j.csite.2020.100715
  • Rehman, K.U., Al-Kouz, W., Sherif, E.S.M., and Abdelmalek, Z., 2020, Hybrid meshed analysis on rhombus shaped solid material domain (RSSMD) equipped with non-Newtonian liquid stream. Journal of Science: Advanced Materials and Devices 54, 476–486.
  • Rehman, K.U., Shatanawi, W., and Shatnawi, T.A., 2021, Case study on thermally fluidized suspension in porous enclosure: Hybrid computational analysis. Case Studies in Thermal Engineering 30, 101730 .
  • Khan, M.I., Haq, F., Khan, S.A., Hayat, T., and Khan, M.I., 2020, Development of thixotropic nanomaterial in fluid flow with gyrotactic microorganisms, activation energy, mixed convection. Computer Methods and Programs in Biomedicine 187, 105186. doi: 10.1016/j.cmpb.2019.105186
  • Huh, D., Matthews, B.D., Mammoto, A., Montoya-Zavala, M., Hsin, H.Y., and Ingber, D.E., 2010, Reconstituting organ-level lung functions on a chip. Science 328(5986), 1662–1668. doi: 10.1126/science.1188302
  • Kleinstreuer, C., Li, J., and Koo, J., 2008, Microfluidics of nano-drug delivery. International Journal of Heat and Mass Transfer 51(23–24), 5590–5597. doi: 10.1016/j.ijheatmasstransfer.2008.04.043
  • Li, H., Liu, S., Dai, Z., Bao, J., and Yang, X., 2009, Applications of nanomaterials in electrochemical enzyme biosensors. Sensors 9(11), 8547–8561. doi: 10.3390/s91108547
  • Hatami, M., 2017, Numerical study of nanofluids natural convection in a rectangular cavity including heated fins. Journal of Molecular Liquids 233, 1–8. doi: 10.1016/j.molliq.2017.02.112
  • Oztop, H.F., Abu-Nada, E., Varol, Y., and Chamkha, A., 2011, Natural convection in wavy enclosures with volumetric heat sources. International Journal of Thermal Sciences 50(4), 502–514. doi: 10.1016/j.ijthermalsci.2010.10.015

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.