136
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Plant growth-promoting rhizobacteria’s (PGPR) effects on Medicago sativa growth, arbuscular mycorrhizal colonisation, and soil enzyme activities

ORCID Icon, , , , , , , & show all

References

  • George, P., Gupta, A., Gopal, M., Thomas, L. and Thomas, G.V., 2013, Multifarious beneficial traits and plant growth promoting potential of Serratia marcescens KiSII and Enterobacter sp. RNF 267 isolated from the rhizosphere of coconut palms (Cocos nucifera L.). World Journal of Microbiology & Biotechnology 29(1), 109–117. doi: 10.1007/s11274-012-1163-6.
  • Mal, B., Mahapatra, P. and Mohanty, S., 2014, Effect of diazotrophs and chemical fertilizers on production and economics of okra (Abelmoschus esculentus, L.) cultivars. American Journal of Plant Sciences 5(1), 168–174. doi: 10.4236/ajps.2014.51022.
  • Aslantaş, R., Cakmakçi, R. and Şahin, F., 2007, Effect of plant growth promoting rhizobacteria on young apple tree growth and fruit yield under orchard conditions. Scientia horticulturae 111(4), 371–377. doi: 10.1016/j.scienta.2006.12.016.
  • Ferioun, M., Bouhraoua, S., Srhiouar, N., Tirry, N., Belahcen, D., Siang, T.C., Louahlia, S. and El Ghachtouli, N., 2023, Optimized drought tolerance in barley (Hordeum vulgare L.) using plant growth-promoting rhizobacteria (PGPR). Biocatalysis and Agricultural Biotechnology 50, 10269. doi: 10.1016/j.bcab.2023.102691.
  • Zhang, H., Kim, M.-S., Sun, Y., Dowd, S.E., Shi, H. and Paré, P.W., 2008, Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Molecular Plant-Microbe Interactions 21(6), 737–744. doi: 10.1094/MPMI-21-6-0737.
  • Nanjundappa, A., Bagyaraj, D.J., Saxena, A.K., Kumar, M. and Chakdar, H., 2019, Interaction between arbuscular mycorrhizal fungi and Bacillus spp. in soil enhancing growth of crop plants. Fungal Biology and Biotechnology 6(1), 23. doi: 10.1186/s40694-019-0086-5.
  • Frey‐klett, P., Garbaye, J. and Tarkka, M., 2007, The mycorrhiza helper bacteria revisited. The New Phytologist 176(1), 22–36. doi: 10.1111/j.1469-8137.2007.02191.x.
  • Vosátka, M. and Gryndler, M., 1999, Treatment with culture fractions from Pseudomonas putida modifies the development of Glomus fistulosum mycorrhiza and the response of potato and maize plants to inoculation. Applied Soil Ecology 11(2–3), 245–251. doi: 10.1016/S0929-1393(98)00151-6.
  • Artursson, V., Finlay, R.D. and Jansson, J.K., 2006, Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environmental Microbiology 8(1), 1–10. doi: 10.1111/j.14622920.2005.00942.x.
  • Pivato, B., Offre, P., Marchelli, S., Barbonaglia, B., Mougel, C., Lemanceau, P. and Berta, G., 2009, Bacterial effects on arbuscular mycorrhizal fungi and mycorrhiza development as influenced by the bacteria, fungi, and host plant. Mycorrhiza 19(2), 81–90. doi: 10.1007/s00572-008-0205-2.
  • Kumar, J.D., Sharma, G.D. and Mishra, R.R., 1992, Soil microbial population numbers and enzyme activities in relation to altitude and forest degradation. Soil Biology & Biochemistry 24, 761–767. doi: 10.1016/0038-0717(92)90250-2.
  • Speir, T.W. and Ross, D.J., 1975, Effects of storage on the activities of protease, urease, phosphatase, and sulphatase in three soils under pasture. New Zealand Journal of Science 18, 231–237.
  • Martinez, C.E. and Tabatabai, M.A., 1997, Decomposition of biotechnology by‐products in soils. Journal of Environmental Quality 26(3), 625–632. doi: 10.2134/jeq1997.00472425002600030006x.
  • Acosta-Martı́nez, V. and Tabatabai, M.A., 2002, Inhibition of arylamidase activity in soils by toluene. Soil Biology & Biochemistry 34(2), 229–237. doi: 10.1016/S0038-0717(01)00177-8.
  • Tirry, N., Ferioun, M., Laghmari, G., Kouchou, A., Bahafid, W. and El, B., 2022, Effect of co-immobilized tri-bacteria into alginate beads on growth and root mycorrhizal colonization potential of Medicago sativa plants. Biointerface Research in Applied Chemistry 13(5), 451. doi: 10.33263/BRIAC135.451.
  • Tirry, N., Kouchou, A., Laghmari, G., Lemjereb, M., Hnadi, H., Amrani, K., Bahafid, W. and El Ghachtouli, N., 2021, Improved salinity tolerance of Medicago sativa and soil enzyme activities by PGPR. Biocatalysis and Agricultural Biotechnology 31, 101914. doi: 10.1016/j.bcab.2021.101914.
  • Nautiyal, C.S., 1999, An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiology Letters 170(1), 265–270. doi: 10.1111/j.1574-6968.1999.tb13383.x.
  • Islam, M.T., Deora, A., Hashidoko, Y., Rahman, A., Ito, T. and Tahara, S., 2007, Isolation and identification of potential phosphate solubilizing bacteria from the rhizoplane of Oryza sativa L. cv. BR29 of Bangladesh. Zeitschrift Für Naturforschung C 62(1–2), 103–110. doi: 10.1515/znc-2007-1-218.
  • Fiske, C.H. and Subbarow, Y., 1925, The colorimetric determination of phosphorus. Journal of Biological Chemistry 66(2), 375–400. doi: 10.1016/S0021-9258(18)84756-1.
  • Lorck, H., 1948, Production of hydrocyanic acid by bacteria. Physiologia plantarum 1(2), 142–146. doi: 10.1111/j.1399-3054.1948.tb07118.x.
  • Schwyn, B. and Neilands, J.B., 1987, Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry 160(1), 47–56. doi: 10.1016/0003-2697(87)90612-9.
  • Haidar, R., Roudet, J., Bonnard, O., Dufour, M.C., Corio-Costet, M.F., Fert, M., Gautier, T., Deschamps, A. and Fermaud, M., 2016, Screening and modes of action of antagonistic bacteria to control the fungal pathogen Phaeomoniella chlamydospora involved in grapevine trunk diseases. Microbiological Research 192, 172–184. doi: 10.1016/j.micres.2016.07.003.
  • Phillips, J.M. and Hayman, D.S., 1970, Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society 55(1), 158–IN18. doi: 10.1016/S0007-1536(70)80110-3.
  • Trouvelot, A., Kough, J.L. and Gianinazzi-Pearson, V., 1986, Mesure du taux de mycorhization VA d’un système radiculaire. Recherche de méthode d’estimation ayant une signification fonctionnelle. Physiological and Genetical Aspects of Mycorrhizae: Proceedings of the 1st European Symposium on Mycorrhizae, Dijon, 1-5 July 1985, pp. 217–221.
  • Dick, R.P., Breakwell, D.P. and Turco, R.F., 1997, Soil enzyme activities and biodiversity measurements as integrative microbiological indicators. Methods for Assessing Soil Quality 49, 247–271.
  • Eivazi, F. and Tabatabai, M.A., 1988, Glucosidases and galactosidases in soils. Soil Biology & Biochemistry 20(5), 601–606. doi: 10.1016/0038-0717(88)90141-1.
  • Eichlerová, I., Šnajdr, J. and Baldrian, P., 2012, Laccase activity in soils: Considerations for the measurement of enzyme activity. Chemosphere 88(10), 1154–1160. doi: 10.1016/j.chemosphere.2012.03.019.
  • Weisburg, W.G., Barns, S.M., Pelletier, D.A. and Lane, D.J., 1991, 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology 173(2), 697–703.48. doi: 10.1128/jb.173.2.697-703.1991.
  • Edgar, R.C., 2004, MUSCLE: A multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5(1), 1–19. doi: 10.1186/1471-2105-5-113.
  • Hall, J.A., Peirson, D., Ghosh, S. and Glick, B., 1996, Root elongation in various agronomic crops by the plant growth promoting rhizobacterium Pseudomonas putida GR12–2. Israel Journal of Plant Sciences 44(1), 37–42. doi: 10.1080/07929978.1996.10676631.
  • Huang, X., Zhou, D., Guo, J., Manter, D.K., Reardon, K.F. and Vivanco, J.M., 2015, Bacillus spp. From rainforest soil promote plant growth under limited nitrogen conditions. Journal of Applied Microbiology 118(3), 672–684. doi: 10.1111/jam.12720.
  • Li, H., Qiu, Y., Yao, T., Ma, Y., Zhang, H. and Yang, X., 2020, Effects of PGPR microbial inoculants on the growth and soil properties of Avena sativa, Medicago sativa, and Cucumis sativus seedlings. Soil and Tillage Research 199, 104577. doi: 10.1016/j.still.2020.104577.
  • Zakry, F.A.A., Shamsuddin, Z.H., Rahim, K.A., Zakaria, Z.Z. and Rahim, A.A., 2012, Inoculation of Bacillus sphaericus UPMB-10 to young oil palm and measurement of its uptake of fixed nitrogen using the 15N isotope dilution technique. Microbes and Environments 27(3), 257–262. doi: 10.1264/jsme2.ME11309.
  • Gyaneshwar, P., Naresh Kumar, G., Parekh, L.J. and Poole, P.S., 2002, Role of soil microorganisms in improving P nutrition of plants. Plant and Soil 245(1), 83–93. doi: 10.1023/A:1020663916259.
  • Banik, A., Dash, G.K., Swain, P., Kumar, U., Mukhopadhyay, S.K. and Dangar, T.K., 2019, Application of rice (Oryza sativa L.) root endophytic diazotrophic Azotobacter sp. Strain Avi2 (MCC 3432) can increase rice yield under green house and field condition. Microbiological Research 219, 56–65. doi: 10.1016/j.micres.2018.11.004.
  • Dimkpa, C., Weinand, T. and Asch, F., 2009, Plant–rhizobacteria interactions alleviate abiotic stress conditions. Plant, Cell & Environment 32(12), 1682–1694. doi: 10.1111/j.1365-3040.2009.02028.x.
  • Fröhlich, A., Buddrus-Schiemann, K., Durner, J., Hartmann, A. and Von Rad, U., 2012, Response of barley to root colonization by Pseudomonas sp. DSMZ 13134 under laboratory, greenhouse, and field conditions. Journal of Plant Interactions 7(1), 1–9. doi: 10.1080/17429145.2011.597002.
  • Pal, A. and Sharma, S., 1999, Excess molar volumes and viscosities of binary liquid mixtures of ethylene glycol dimethyl ether+ ethylene glycol monomethyl,+ diethylene glycol monomethyl, and+ triethylene glycol monomethyl ethers at 298.15 and 308.15 K. Journal of Chemical & Engineering Data 44(2), 212–215. doi: 10.1021/je980215c.
  • Castro, R.A., Quecine, M.C., Lacava, P.T., Batista, B.D., Luvizotto, D.M., Marcon, J., Ferreira, A., Melo, I.S. and Azevedo, J.L., 2014, Isolation and enzyme bioprospection of endophytic bacteria associated with plants of Brazilian mangrove ecosystem. SpringerPlus 3(1), 1–9. doi: 10.1186/2193-1801-3-382.
  • Farhat, M.B., Taktek, S. and Chouayekh, H., 2014, Encapsulation in alginate enhanced the plant growth promoting activities of two phosphate solubilizing bacteria isolated from the phosphate mine of Gafsa. Net Journal of Agricultural Science 2(4), 131–139.
  • Hemashenpagam, N. and Selvaraj, T., 2011, Effect of arbuscular mycorrhizal (AM) fungus and plant growth promoting rhizomicroorganisms (PGPR’s) on medicinal plant Solanum viarum seedlings. Journal of Environmental Biology 32(5), 579.
  • Pathak, D., Lone, R., Khan, S. and Koul, K.K., 2019, Isolation, screening and molecular characterization of free-living bacteria of potato (Solanum tuberosum L.) and their interplay impact on growth and production of potato plant under mycorrhizal association. Scientia horticulturae 252, 388–397. doi: 10.1016/j.scienta.2019.02.072.
  • Visen, A., Bohra, M., Singh, P.N., Srivastava, P.C., Kumar, S., Sharma, A.K. and Chakraborty, B., 2017, Two pseudomonas strains facilitate AMF mycorrhization of litchi (Litchi chinensis Sonn.) and improving phosphorus uptake. Rhizosphere 3, 196–202. doi: 10.1016/j.rhisph.2017.04.006.
  • Chiquito-Contreras, R.G., Osorio-Acosta, F., García-Pérez, E., Villanueva-Jiménez, J.A., Zulueta-Rodríguez, R. and Castillo-Rocha, D.G., 2012, Biofertilization with rhizobacteria and a consortium of arbuscular mycorrhizal fungi in citrus rootstocks. Tropical and Subtropical Agroecosystems 15(2), S72–81.
  • Aseri, G.K., Jain, N., Panwar, J., Rao, A.V. and Meghwal, P.R., 2008, Biofertilizers improve plant growth, fruit yield, nutrition, metabolism and rhizosphere enzyme activities of pomegranate (Punica granatum L.) in Indian Thar Desert. Scientia horticulturae 117(2), 130–135. doi: 10.1016/j.scienta.2008.03.014.
  • Del Carmen Jaizme-Vega, M., Rodríguez-Romero, A.S. and Núñez, L.A.B., 2006, Effect of the combined inoculation of arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria on papaya (Carica papaya L.) infected with the root-knot nematode Meloidogyne incognita. Fruits 61(3), 151–162. doi: 10.1051/fruits:2006013.
  • Mamatha, G., Bagyaraj, D. and Jaganath, S., 2002, Inoculation of field-established mulberry and papaya with arbuscular mycorrhizal fungi and a mycorrhiza helper bacterium. Mycorrhiza 12(6), 313–316. doi: 10.1007/s00572-002-0200-y.
  • Garbaye, J., 1994, Tansley review no. 76 helper bacteria: A new dimension to the mycorrhizal symbiosis. The New Phytologist 128(2), 197–210. doi: 10.1111/j.1469-8137.1994.tb04003.x.
  • Deveau, A., Palin, B., Delaruelle, C., Peter, M., Kohler, A., Pierrat, J.-C., Sarniguet, A., Garbaye, J., Martin, F. and Frey-Klett, P., 2007, The mycorrhiza helper Pseudomonas fluorescens BBc6R8 has a specific priming effect on the growth, morphology and gene expression of the ectomycorrhizal fungus Laccaria bicolor S238N. The New Phytologist 175(4), 743–755. doi: 10.1111/j.1469-8137.2007.02148.x.
  • Xie, Q., Madhukar, A., Chen, P. and Kobayashi, N.P., 1995, Vertically self-organized InAs quantum box islands on GaAs (100). Physical Review Letters 75(13), 2542. doi: 10.1103/PhysRevLett.75.2542.
  • Umali-Garcia, M., Hubbell, D.H., Gaskins, M.H. and Dazzo, F.B., 1980, Association of Azospirillum with grass roots. Applied & Environmental Microbiology 39(1), 219–226. doi: 10.1128/aem.39.1.219-226.1980.
  • Hassan, S.E.-D., 2017, Plant growth-promoting activities for bacterial and fungal endophytes isolated from medicinal plant of Teucrium polium L. Journal of Advanced Research 8(6), 687–695. doi: 10.1016/j.jare.2017.09.001.
  • Stephen, J., Shabanamol, S., Rishad, K.S. and Jisha, M.S., 2015, Growth enhancement of rice (Oryza sativa) by phosphate solubilizing Gluconacetobacter sp.(MTCC 8368) and Burkholderia sp.(MTCC 8369) under greenhouse conditions. 3 Biotech 5(5), 831–837. doi: 10.1007/s13205-015-0286-5.
  • Mawdsley, J.L. and Burns, R.G., 1994, Inoculation of plants with a Flavobacterium species results in altered rhizosphere enzyme activities. Soil Biology & Biochemistry 26(7), 871–882. doi: 10.1016/0038-0717(94)90303-4.
  • Chacko, S., Ramteke, P.W. and Joseph, B., 2012, A comparative study on the production of amidase using immobilized and dehydrated immobilized cells of Pseudomonas putida MTCC 6809. Journal of Genetic Engineering & Biotechnology 10(1), 121–127. doi: 10.1016/j.jgeb.2012.01.003.
  • Tadano, T., Ozawa, K., Sakai, H., Osaki, M. and Matsui, H., 1993, Secretion of acid phosphatase by the roots of crop plants under phosphorus-deficient conditions and some properties of the enzyme secreted by lupin roots. In: Plant Nutrition—From Genetic Engineering to Field Practice (Springer), pp. 99–102.
  • Vazquez, M.J., Alonso, J.L., Domınguez, H. and Parajo, J.C., 2000, Xylooligosaccharides: Manufacture and applications. Trends in Food Science & Technology 11(11), 387–393. doi: 10.1016/S0924-2244(01)00031-0.
  • Eivazi, F. and Tabatabai, M.A., 1977, Phosphatases in soils. Soil Biology & Biochemistry 9(3), 167–172. doi: 10.1016/0038-0717(77)90070-0.
  • Gilbert, G.A., Knight, J.D., Vance, C.P. and Allan, D.L., 1999, Acid phosphatase activity in phosphorus‐deficient white lupin roots. Plant, Cell & Environment 22(7), 801–810. doi: 10.1046/j.1365-3040.1999.00441.x.
  • Spaepen, S., Vanderleyden, J. and Remans, R., 2007, Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiology Reviews 31(4), 425–448. doi: 10.1111/j.1574-6976.2007.00072.x.
  • Thurston, C.F., 1994, The structure and function of fungal laccases. Microbiology (Reading, England) 140(1), 19–26. doi: 10.1099/13500872-140-1-19.
  • Macleod, K., Rumbold, K. and Padayachee, K., 2015, A systems approach to uncover the effects of the PGPR Pseudomonas koreensis on the level of drought stress tolerance in Helianthus Annuus. Procedia Environmental Sciences 29, 262–263. doi: 10.1016/j.proenv.2015.07.200.
  • Kang, S.-M., Adhikari, A., Lee, K.-E., Park, Y.-G., Shahzad, R. and Lee, I.-J., 2021, Gibberellin producing rhizobacteria Pseudomonas koreensis mu2 enhance growth of lettuce (Lactuca sativa) and Chinese cabbage (Brassica rapa, chinensis). Journal of Microbiology, Biotechnology and Food Sciences 10, 166–170. doi: 10.15414/jmbfs.2019.9.2.166-170.
  • Sayyed, R.Z., Gangurde, N.S., Patel, P.R., Josh, S.A. and Chincholkar, S.B., 2010, Siderophore production by Alcaligenes faecalis and its application for growth promotion in Arachis hypogaea. Indian Journal of Biotehnology 9, 302–307.
  • Sohrabi, F., Sheikholeslami, M., Heydari, R., Rezaee, S. and Sharifi, R., 2018, Evaluation of four rhizobacteria on tomato growth and suppression of root-knot nematode, Meloidogyne javanica under greenhouse conditions, a pilot study. Egyptian Journal of Biological Pest Control 28, 1–5. doi: 10.1186/s41938-018-0059-7.
  • Zapata-Sifuentes, G., Hernandez-Montiel, L.G., Saenz-Mata, J., Fortis-Hernandez, M., Blanco-Contreras, E., Chiquito-Contreras, R.G. and Preciado-Rangel, P., 2022, Plant growth-promoting rhizobacteria improve growth and fruit quality of cucumber under greenhouse conditions. Plants 11(12), 1612. doi: 10.3390/plants11121612.
  • Breedt, G., Labuschagne, N. and Coutinho, T.A., 2017, Seed treatment with selected plant growth‐promoting rhizobacteria increases maize yield in the field. The Annals of Applied Biology 171(2), 229–236. doi: 10.1111/aab.12366.
  • Nguyen, M.L., Glaes, J., Spaepen, S., Bodson, B., du Jardin, P. and Delaplace, P., 2019, Biostimulant effects of Bacillus strains on wheat from in vitro towards field conditions are modulated by nitrogen supply. Journal of Plant Nutrition & Soil Science 182(3), 325–334. doi: 10.1002/jpln.201700610.
  • Pérez-Rodriguez, M.M., Pontin, M., Lipinski, V., Bottini, R., Piccoli, P. and Cohen, A.C., 2020, Pseudomonas fluorescens and Azospirillum brasilense increase yield and fruit quality of tomato under field conditions. Journal of Soil Science and Plant Nutrition 20, 1614–1624. doi: 10.1007/s42729-020-00233-x.
  • Singh, S., Tripathi, A., Maji, D., Awasthi, A., Vajpayee, P. and Kalra, A., 2019, Evaluating the potential of combined inoculation of Trichoderma harzianum and Brevibacterium halotolerans for increased growth and oil yield in Mentha arvensis under greenhouse and field conditions. Industrial Crops and Products 131, 173–181. doi: 10.1016/j.indcrop.2019.01.039.
  • Nakkeeran, S., Fernando, W.D. and Siddiqui, Z.A., 2006, Plant growth promoting rhizobacteria formulations and its scope in commercialization for the management of pests and diseases. In: Z. A. Siddiqui (Ed.) PGPR: Biocontrol and biofertilization (Dordrecht: Springer), pp. 257–296.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.