45
Views
0
CrossRef citations to date
0
Altmetric
Article

Degradation of antibiotic sulphamethoxazole by application of modified photo-Fenton processes: kinetics, degradation pathways and toxicity

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Shemer, H., Kunukcu, Y.K. and Linden, K.G., 2006, Degradation of the pharmaceutical metronidazole via UV, Fenton and photo-Fenton processes. Chemosphere 63(2), 269–276. doi: 10.1016/j.chemosphere.2005.07.029
  • Jiang, J.Q., Zhou, Z. and Sharma, V.K., 2013, Occurrence, transportation, monitoring and treatment of emerging micro-pollutants in waste water – a review from global views. Microchemical Journal 110, 292–300. doi: 10.1016/j.microc.2013.04.014
  • Trovó, A.G., Nogueira, R.F.P., Agüera, A., Fernandez-Alba, A.R., Sirtori, C. and Malato, S., 2009, Degradation of sulfamethoxazole in water by solar photo-Fenton. Chemical and toxicological evaluation. Water Research 43(16), 3922–3931. doi: 10.1016/j.watres.2009.04.006
  • Hassan, M.M.A., Hassan, A.K. and Allai, S.S., 2018, Treatment of wastewater contaminated with sulfamethoxazole drug using advanced oxidation processes. Australian Journal of Science and Technology 2(2), 72–75.
  • Chen, Y., Zhou, J.L., Cheng, L., Zheng, Y.Y. and Xu, J., 2017, Sediment and salinity effects on the bioaccumulation of sulfamethoxazole in zebrafish (Danio Rerio). Chemosphere 180, 467–475. doi: 10.1016/j.chemosphere.2017.04.055
  • Murillo-Sierra, J.C., Ruiz-Ruiz, E., Hinojosa-Reyes, L., Guzmán-Mar, J.L., Machuca-Martínez, F. and Hernández-Ramírez, A., 2018, Sulfamethoxazole mineralization by solar photo electro-Fenton process in a pilot plant. Catalysis Today 313, 175–181. doi: 10.1016/j.cattod.2017.11.003
  • Tang, J. and Wang, J., 2020, Iron-copper bimetallic metal-organic frameworks for efficient Fenton-like degradation of sulfamethoxazole under mild conditions. Chemosphere 241, 125002. doi: 10.1016/j.chemosphere.2019.125002
  • Huang, Y., Nengzi, L., Li, X., Meng, L., Song, Q. and Cheng, X., 2020, Materials science in semiconductor processing fabrication of Cu2O/Bi25FeO40 nanocomposite and its enhanced photocatalytic mechanism and degradation pathways of sulfamethoxazole. Materials Science in Semiconductor Processing 109, 104932. doi: 10.1016/j.mssp.2020.104932
  • Vona, A., di Martino, F., Garcia-Ivars, J., Picó, Y., Mendoza-Roca, J.A. and Iborra-Clar, M.I., 2015, Comparison of different removal techniques for selected pharmaceuticals. Journal of Water Process Engineering 5, 48–57. doi: 10.1016/j.jwpe.2014.12.011
  • De la Cruz, N., Giménez, J., Esplugas, S., Grandjean, D., De Alencastro, L.F. and Pulgarín, C., 2012, Degradation of 32 emergent contaminants by UV and neutral photo-Fenton in domestic wastewater effluent previously treated by activated sludge. Water Research 246(6), 1947–1957. doi: 10.1016/j.watres.2012.01.014
  • De Luca, A., Dantas, R.F. and Esplugas, S., 2014, Assessment of iron chelates efficiency for photo-Fenton at neutral pH. Water Research 61, 232–242. doi: 10.1016/j.watres.2014.05.033
  • Wang, S. and Wang, J., 2017, Comparative study on sulfamethoxazole degradation by Fenton and Fe(II)-activated persulfate process. RSC Advances 7(77), 48670–48677. doi: 10.1039/C7RA09325J
  • GilPavas, E., Dobrosz-Gómez, I. and Gómez-García, M.Á., 2017, Coagulation-flocculation sequential with Fenton or photo-Fenton processes as an alternative for the industrial textile wastewater treatment. Journal of Environmental Management 203, 615. doi: 10.1016/j.jenvman.2017.03.092
  • Giri, A.S. and Golder, A.K., 2014, Fenton, photo-Fenton, H2O2 photolysis, and TiO2 photocatalysis for dipyrone oxidation: Drug removal, mineralization, biodegradability, and degradation mechanism. Industrial & Engineering Chemistry Research 53 (4), 1351–1358. 10.1021/ie402279q
  • González, O., Sans, C. and Esplugas, S., 2007, Sulfamethoxazole abatement by photo-Fenton. Toxicity, inhibition and biodegradability assessment of intermediates. Journal of Hazardous Materials 146(3), 459–464. doi: 10.1016/j.jhazmat.2007.04.055
  • Kanakaraju, D., Glass, B.D. and Oelgemöller, M., 2018, Advanced oxidation process-mediated removal of pharmaceuticals from water: A review. Journal of Environmental Management 219, 189–207. doi: 10.1016/j.jenvman.2018.04.103
  • Zhang, X., Gu, X., Lu, S., Miao, Z., Xu, M., Fu, X., Qiu, Z. and Sui, Q., 2015, Degradation of trichloroethylene in aqueous solution by calcium peroxide activated with ferrous ion. Journal of Hazardous Materials 284, 253–260. doi: 10.1016/j.jhazmat.2014.11.030
  • Amina, S.X., Wu, K., Si, Y. and Yousaf, B., 2018, Synergistic effects and mechanisms of hydroxyl radical-mediated oxidative degradation of sulfamethoxazole by Fe(II)-EDTA catalyzed calcium peroxide: Implications for remediation of antibiotic-contaminated water. Chemical Engineering Journal 353, 80–91. doi: 10.1016/j.cej.2018.07.078
  • Wu, Y., Passananti, M., Brigante, M., Dong, W. and Mailhot, G., 2014, Fe(III)–EDDS complex in Fenton and photo-Fenton processes: From the radical formation to the degradation of a target compound. Environmental Science and Pollution Research 21, 12154–12162. doi: 10.1007/s11356-014-2945-1
  • Dias, I.N., Souza, B.S., Pereira, J.H.O.S., Moreira, F.C., Dezotti, M., Boaventura, R.A.R. and Vilar, V.J.P., 2014, Enhancement of the photo-Fenton reaction at near neutral pH through the use of ferrioxalate complexes: A case study on trimethoprim and sulfamethoxazole antibiotics removal from aqueous solutions. Chemical Engineering Journal 247, 302–313. doi: 10.1016/j.cej.2014.03.020
  • Kowalska, K., Roccamante, M., Cabrera Reina, A., Plaza-Bolaños, P., Oller, I. and Malato, S., 2021, Pilot-scale removal of microcontaminants by solar-driven photo-Fenton in treated municipal effluents: Selection of operating variables based on lab-scale experiments. Journal of Environmental Chemical Engineering 9(1), 104788. doi: 10.1016/j.jece.2020.104788
  • Mejri, A., Soriano-Molina, P., Miralles-Cuevas, S., Trabelsi, I. and Sánchez Pérez, J.A., 2019, Effect of liquid depth on microcontaminant removal by solar photo-Fenton with Fe(III): EDDS at neutral pH in high salinity wastewater. Environmental Science and Pollution Research 26(27), 28071–28079. doi: 10.1007/s11356-019-06042-9
  • Papoutsakis, S., Miralles-Cuevas, S., Oller, I., Garcia Sanchez, J.L., Pulgarin, C. and Malato, S., 2015, Microcontaminant degradation in municipal wastewater treatment plant secondary effluent by EDDS assisted photo-Fenton at near-neutral pH: An experimental design approach. Catalysis Today 252, 61–69. doi: 10.1016/j.cattod.2015.02.005
  • Schumb, W.C., Satterfield, C.N. and Wentworth, R.L., 1955, Hydrogen peroxide (New York: Reinhold Publishing Corporation).
  • Watts, R.J., Foget, M.K., Kong, S.H. and Teel, A.L., 1966, Hydrogen peroxide decomposition in model subsurface systems. Journal of Hazardous Materials 69(2), 229–243. doi: 10.1016/s0304-3894(99)00114-4
  • Hongbo, T.A.N., Baoguo, M.A., Xiangguo, L.I., Shouwei, J. and Hu, Y., 2014, Effect of competitive adsorption between sodium tripolyphosphate and naphthalene superplasticizer on fluidity of cement paste. Journal of Wuhan University of Technology-Materials Science Edition 29(2), 334–340. doi: 10.1007/s11595-014-0917-4
  • Hourant, P., 2004, General properties of the alkaline phosphates: Major food and technical applications. Phosphorus Research Bulletin 15, 85–94. doi: 10.3363/prb1992.15.0_85
  • Kort, E.D., Minor, M., Snoeren, T., Hooijdonk, T.V. and Linden, E.V.D., 2009, Calcium-binding capacity of organic and inorganic ortho- and polyphosphates. Dairy Science & Technology 89(3–4), 283–299. doi: 10.1051/dst/2009008
  • Oguz, Y., Cochrane, C., Koncar, V. and Mordon, S.R., 2016, Doehlert experimental design applied to optimization of light emitting textile structures. Optical Fiber Technology 30, 38–47. doi: 10.1016/j.yofte.2016.01.012
  • Ellouze, S., Kessemtini, S., Clematis, D., Cerisola, G., Panizza, M. and Elaoud, S.C., 2017, Application of Doehlert design to the electro-Fenton treatment of Bismarck Brown Y. Journal of Electroanalytical Chemistry 799, 34–39. doi: 10.1016/j.jelechem.2017.05.042
  • Boreen, A.L., Arnold, W.A. and McNeill, K., 2004, Photochemical fate of sulfa drugs in then aquatic environment: Sulfa drugs containing five-membered heterocyclic groups. Environmental Science and Technology 38(14), 3933–3940. doi: 10.1021/es0353053
  • Alharbi, S.K., Kang, J., Nghiem, L.D., van de Merwe, J.P., Leusch, F.D.L. and Price, W.E., 2017, Photolysis and UV/H2O2 of diclofenac, sulfamethoxazole, carbamazepine, and trimethoprim: Identification of their major degradation products by ESI–LC–MS and assessment of the toxicity of reaction mixtures. Process Safety and Environmental Protection 112, 222–234. doi: 10.1016/j.psep.2017.07.015
  • Cheng, Z., Zuo, Z., Yang, S., Yuan, Z., Huang, X. and Liu, Y., 2021, Study of Free Nitrous Acid (FNA)-based elimination of sulfamethoxazole: Kinetics, transformation pathways, and toxicity assessment. Water Research 189, 116629. doi: 10.1016/j.watres.2020.116629
  • Majewsky, M., Wagner, D., Delay, M., Bräse, S., Yargeau, V. and Horn, H., 2014, Antibacterial activity of sulfamethoxazole Transformation Products (TPs): General relevance for sulfonamide TPs modified at the para position. Chemical Research in Toxicology 27(10), 1821–1828. doi: 10.1021/tx500267x
  • Malato, S., Blanco, J., Cáceres, J., Fernández-Alba, A.R., Agüera, A. and Rodríguez, A., 2002, Photocatalytic treatment of water-soluble pesticides by photo-Fenton and TiO2 using solar energy. Catalysis Today 76(2–4), 209–220. doi: 10.1016/S0920-5861(02)00220-1
  • ISO, 1998, International Organization for Standardization. ISO 6332:1998. Water Quality – Determination of Iron – Spectrometric Method Using 1,10-Phenanthroline.
  • Nogueira, R.F.P., Trovó, A.G., Da Silva, M.R.A., Villa, R.D. and De Oliveira, M.C., 2007, Fundamentos e aplicações ambientais dos processos Fenton e foto-Fenton. Quimica Nova 30(2), 400–408. doi: 10.1590/S0100-40422007000200030
  • Iqbal, M. and Bhatti, I.A., 2014, Re-utilization option of industrial wastewater treated by advanced oxidation process. Pakistan Journal of Agricultural Sciences 51(4), 1041–1047.
  • Aebi, H., 1984, Catalase in vitro. Methods in Enzymology 105, 121–126. doi: 10.1016/S0076-6879(84)05016-3
  • Anderson, M.D., Prasad, T.K. and Stewart, C.R., 1995, Changes in isozyme profiles of catalase, peroxidase, and glutathione reductase during acclimation to chilling in mesocotyls of maize seedlings. Plant Physiology 109(4), 1247–1257. doi: 10.1104/pp.109.4.1247
  • Heath, R.L. and Packer, L., 1968, Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics 125(1), 189–198. doi: 10.1016/0003-9861(68)90654-1
  • Drillia, P., Stamatelatou, K. and Lyberatos, G., 2005, Fate and mobility of pharmaceuticals in solid matrices. Chemosphere 60(8), 1034–1044. doi: 10.1016/j.chemosphere.2005.01.032
  • Bueno, F., Borba, F.H., Pellenz, L., Schmitz, M., Godoi, B., Espinoza-Quiñones, F.R., De Pauli, A.R. and Módenes, A.N., 2018, Degradation of ciprofloxacin by the electrochemical peroxidation process using stainless steel electrodes. Journal of Environmental Chemical Engineering 6(2), 2855–2864. doi: 10.1016/j.jece.2018.04.033
  • Paiva, V.A.B., Paniagua, C.E.S., Amildon, I., Gonçalves, B.R., Pereira, S., Daniel, D., Machado, A.E.H. and Trovó, A.G., 2018, Simultaneous degradation of pharmaceuticals by classic and modified photo-Fenton process. Journal of Environmental Chemical Engineering 6(1), 1086–1092. doi: 10.1016/j.jece.2018.01.013
  • Klamerth, N., Malato, S., Maldonado, M.I., Agüera, A. and Fernández-Alba, A., 2011, Modified photo-Fenton for degradation of emerging contaminants in municipal wastewater effluents. Catalysis Today 161(1), 241–246. doi: 10.1016/j.cattod.2010.10.074
  • Montgomery, D.C., 1997, Design and analysis of experiments, 4th ed. (New York: John Wiley & Sons).
  • Zhang, Y., Klamerth, N., Chelme-Ayala, P. and Gamal El-Din, M., 2016, Comparison of nitrilotriacetic acid and [S,S]-ethylenediamine-N,N’-disuccinic acid in UV-Fenton for the treatment of oil sands process-affected water at natural pH. Environmental Science and Technology 50(19), 10535–10544. doi: 10.1021/acs.est.6b03050
  • Klamerth, N., Malato, S., Agüera, A. and Fernández-Alba, A., 2013, Photo-Fenton and modified photo-Fenton at neutral pH for the treatment of emerging contaminants in wastewater treatment plant effluents: A comparison. Water Research 47(2), 833–840. doi: 10.1016/j.watres.2012.11.008
  • Martínez-Costa, J.I., Rivera-Utrilla, J., Leyva-Ramos, R., Sánchez-Polo, M., Velo-Gala, I. and Mota, A.J., 2018, Individual and simultaneous degradation of the antibiotics sulfamethoxazole and trimethoprim in aqueous solutions by Fenton, Fenton-like and photo-Fenton processes using solar and UV radiations. Journal of Photochemistry and Photobiology A: Chemistry 360, 95–108. doi: 10.1016/j.jphotochem.2018.04.014
  • Qiang, Z. and Adams, C., 2004, Potentiometric determination of acid dissociation constants (pKa) for human and veterinary antibiotics. Water Research 38(12), 2874–2890. doi: 10.1016/j.watres.2004.03.017
  • Pignatello, J.J., Oliveros, E. and MacKay, A., 2006, Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Critical Reviews in Environmental Science and Technology 36(1), 1–84. doi: 10.1080/10643380500326564
  • Zhang, Y. and Zhou, M., 2019, A critical review of the application of chelating agents to enable Fenton and Fenton-like reactions at high pH values. Journal of Hazardous Materials 362, 436–450. doi: 10.1016/j.jhazmat.2018.09.035
  • Manenti, D.R., Módenes, A.N., Soares, P.A., Espinoza-Quiñones, F.R., Boaventura, R.A.R., Bergamasco, R. and Vilar, V.J.P., 2014, Assessment of a multistage system based on electrocoagulation, solar photo-Fenton and biological oxidation processes for real textile wastewater treatment. Chemical Enginering Journal 252, 120–130. doi: 10.1016/j.cej.2014.04.096
  • Soares, P.A., Silva, T.F.C.V., Manenti, D.R., Souza, S.M.A.G.U., Boaventura, R.A.R. and Vilar, V.J.P., 2014, Insights into real cotton-textile dyeing wastewater treatment using solar advanced oxidation processes. Environmental Science and Pollution Research 21(2), 932–945. doi: 10.1007/s11356-013-1934-0
  • Boczkaj, G. and Fernandes, A., 2017, Wastewater treatment by means of advanced oxidation processes at basic pH conditions: A review. Chemical Engineering Journal 320, 608–633. doi: 10.1016/j.cej.2017.03.084
  • De la Cruz, N., Esquius, L., Grandjean, D., Magnet, A., Tungler, A., de Alencastro, L.F. and Pulgarín, C., 2013, Degradation of emergent contaminants by UV, UV/H2O2 and neutral photo-Fenton at pilot scale in a domestic wastewater treatment plant. Water Research 47(15), 5836–5845. doi: 10.1016/j.watres.2013.07.005
  • Sun, S., Yao, H., Li, X., Deng, S., Zhao, S. and Zhang, W., 2020, Enhanced degradation of sulfamethoxazole (SMX) in toilet wastewater by photo-Fenton reactive membrane filtration. Nanomaterials: Overview and Historical Perspectives 10(1), 1–11. doi: 10.3390/nano10010180
  • Aderemi, A.O., Novais, S.C., Lemos, M.F., Alves, L.M., Hunter, C. and Pahl, O., 2018, Oxidative stress responses and cellular energy allocation changes in microalgae following exposure to widely used human antibiotics. Aquatic Toxicology (Amsterdam, Netherlands) 203, 130–139. doi: 10.1016/j.aquatox.2018.08.008
  • Christou, A., Antoniou, C., Christodoulou, C., Hapeshi, E., Stavrou, I., Michael, C., Fatta-Kassinos, D. and Fotopoulos, V., 2016, Stress-related phenomena and detoxification mechanisms induced by common pharmaceuticals in alfalfa (Medicago sativa L.) plants. Science of the Total Environment 557–558, 652–664. doi: 10.1016/j.scitotenv.2016.03.054
  • Yin, R., Chen, Y., Hu, J., Lu, G., Zeng, L., Choi, W. and Zhu, M., 2021, Complexes of Fe(III)-organic pollutants that directly activate Fenton-like processes under visible light. Applied Catalysis B: Environmental 283, 119663. doi: 10.1016/j.apcatb.2020.119663
  • Ji, Y., Fan, Y., Liu, K., Kong, D. and Lu, J., 2015, Thermo activated persulfate oxidation of antibiotic sulfamethoxazole and structurally related compounds. Water Research 87, 1–9. doi: 10.1016/j.watres.2015.09.005
  • Dodd, M.C. and Huang, C.-H., 2004, Transformation of the antibacterial agent sulfamethoxazole in reactions with chlorine: Kinetics, mechanisms, and pathways. Environmental Science and Technology 38(21), 5607–5615. doi: 10.1021/es035225z
  • Gao, S., Zhao, Z., Xu, Y., Tian, J., Qi, H., Lin, W. and Cui, F., 2014, Oxidation of sulfamethoxazole (SMX) by chlorine, ozone and permanganate-A comparative study. Journal of Hazardous Materials 274, 258–269. doi: 10.1016/j.jhazmat.2014.04.024
  • Li, Y., Zhang, B., Liu, X., Zhao, Q., Zhang, H., Zhang, Y., Ning, P. and Tian, S., 2018, Ferrocene-catalyzed heterogeneous Fenton-like degradation mechanisms and pathways of antibiotics under simulated sunlight: A case study of sulfamethoxazole. Journal of Hazardous Materials 353, 26–34. doi: 10.1016/j.jhazmat.2018.02.034
  • Yang, Y., Lu, X., Jiang, J., Ma, J., Liu, G., Cao, Y., Liu, W., Li, J., Pang, S., Kong, X. and Luo, C., 2017, Degradation of sulfamethoxazole by UV, UV/H2O2 and UV/persulfate (PDS): Formation of oxidation products and effect of bicarbonate. Water Research 118, 196–207. doi: 10.1016/j.watres.2017.03.054
  • Lai, L., Yan, J., Li, J. and Lai, B., 2018, Co/Al2O3-EPM as peroxymonosulfate activator for sulfamethoxazole removal: Performance, biotoxicity, degradation pathways and mechanism. Chemical Enginering Journal 343, 676–688. doi: 10.1016/j.cej.2018.01.035
  • Yazdanbakhsh, A.R., Eslami, A., Massoudinejad, M. and Avazpour, M., 2020, Enhanced degradation of sulfamethoxazole antibiotic from aqueous solution using Mn-WO3/LED photocatalytic process: Kinetic, mechanism, degradation pathway and toxicity reduction. Chemical Enginering Journal 380, 122497. doi: 10.1016/j.cej.2019.122497
  • Gong, H. and Chu, W., 2016, Determination and toxicity evaluation of the generated products in sulfamethoxazole degradation by UV/CoFe2O4/TiO2. Journal of Hazardous Materials 314, 197–203. doi: 10.1016/j.jhazmat.2016.04.052
  • Bonvin, F., Omlin, J., Rutler, R., Schweizer, W.B., Alaimo, P.J., Strathmann, T.J., McNeill, K. and Kohn, T., 2013, Direct photolysis of human metabolites of the antibiotic sulfamethoxazole: Evidence for abiotic back-transformation. Environmental Science and Technology 47(13), 6746–6755. doi: 10.1021/es303777k
  • Qiu, J., Yue, C., Zheng, W., Liu, F. and Zhu, J., 2021, Enhanced photocatalytic degradation of sulfamethoxazole by stable hierarchical Fe2O3/Co3O4 heterojunction on nickel foam. Chinese Chemical Letters 32(11), 3431–3434. doi: 10.1016/j.cclet.2021.05.022
  • Qi, C., Liu, X., Lin, C., Zhang, X., Ma, J., Tan, H. and Ye, W., 2014, Degradation of sulfamethoxazole by microwave-activated persulfate: Kinetics, mechanism and acute toxicity. Chemical Enginering Journal 249, 6–14. doi: 10.1016/j.cej.2014.03.086
  • Qin, Q., Liu, T., Zhang, J., Wei, R., You, S. and Xu, Y., 2021, Facile synthesis of oxygen vacancies enriched α-Fe2O3 for peroxymonosulfate activation: A non-radical process for sulfamethoxazole degradation. Journal of Hazardous Materials 419, 126447. doi: 10.1016/j.jhazmat.2021.126447
  • Gonçalves, A.G., Órfão, J.J.M. and Pereira, M.F.R., 2012, Catalytic ozonation of sulphamethoxazole in the presence of carbon materials: Catalytic performance and reaction pathways. Journal of Hazardous Materials 239–240, 167–174. doi: 10.1016/j.jhazmat.2012.08.057
  • Lam, M.W. and Mabury, S.A., 2005, Photodegradation of the pharmaceuticals atorvastatin, carbamazepine, levofloxacin, and sulfamethoxazole in natural waters. Aquatic Sciences 67, 177–188. doi: 10.1007/s00027-004-0768-8
  • Ding, Y., Li, T., Qiu, K., Ma, B. and Wu, R., 2021, Membrane fouling performance of Fe-based coagulation-ultrafiltration process: Effect of sedimentation time. Environmental Research 195, 110756. doi: 10.1016/j.envres.2021.110756
  • Marí, M., Bai, J. and Cederbaum, A.I., 2002, Toxicity by pyruvate in HepG2 cells depleted of glutathione: Role of mitochondria. Free Radical Biology and Medicine 32(1), 73–83. doi: 10.1016/S0891-5849(01)00759-6
  • Du, J., Guo, W., Wang, H., Yin, R., Zheng, H., Feng, X., Che, D. and Ren, N., 2018, Hydroxyl radical dominated degradation of aquatic sulfamethoxazole by Fe0/Bisulfite/O2: Kinetics, mechanisms, and pathways. Water Research 138, 323–332. doi: 10.1016/j.watres.2017.12.046
  • Hu, Z.T., Liu, J.W., Zhao, J., Ding, Y., Jin, Z., Chen, J., Dai, Q., Pan, B., Chen, Z. and Chen, J., 2020, Enhanced BiFeO3/Bi2Fe4O9/H2O2 heterogeneous system for sulfamethoxazole decontamination: System optimization and degradation pathways. Journal of Colloid and Interface Science 577, 54–65. doi: 10.1016/j.jcis.2020.05.043
  • Zheng, L., Jin, H., Yu, M., Zhongwei, Q., Zhang, L., Shikun, C. and Li, Z., 2019, Degradation of sulfamethoxazole by electrochemically activated persulfate using iron anode. International Journal of Chemical Reactor Engineering 17(2), 20180160. doi: 10.1515/ijcre-2018-0160
  • Kokoszka, K., Wilk, J., Felis, E. and Bajkacz, S., 2021, Application of UHPLC-MS/MS method to study occurrence and fate of sulfonamide antibiotics and their transformation products in surface water in highly urbanized areas. Chemosphere 283, 131189. doi: 10.1016/j.chemosphere.2021.131189
  • Yang, L.H., Qiao, B., Xu, Q.M., Liu, S., Yuan, Y. and Cheng, J.S., 2021, Biodegradation of sulfonamide antibiotics through the heterologous expression of laccases from bacteria and investigation of their potential degradation pathways. Journal of Hazardous Materials 416, 125815. doi: 10.1016/j.jhazmat.2021.125815
  • Luo, T., Wan, J., Ma, Y., Wang, Y. and Wan, Y.J., 2019, Sulfamethoxazole degradation by an Fe(II)-activated persulfate process: Insight into the reactive sites, product identification and degradation pathways. Environmental Science: Processes and Impacts 21(9), 1560–1569. doi: 10.1039/c9em00254e
  • Hu, L., Flanders, P.M., Miller, P.L. and Strathmann, T.J., 2007, Oxidation of sulfamethoxazole and related antimicrobial agents by TiO2 photocatalysis. Water Research 41(12), 2612–2626. doi: 10.1016/j.watres.2007.02.026
  • Wang, S., Liu, Y. and Wang, J., 2020, Peroxymonosulfate activation by Fe-Co-O-Codoped graphite carbon nitride for degradation of sulfamethoxazole. Environmental Science and Technology 54(16), 10361–10369. doi: 10.1021/acs.est.0c03256
  • Mirzaei, A., Eddah, M., Roualdes, S., Ma, D. and Chaker, M., 2021, Multiple-homojunction gradient nitrogen doped TiO2 for photocatalytic degradation of sulfamethoxazole, degradation mechanism, and toxicity assessment. Chemical Enginering Journal 422, 130507. doi: 10.1016/j.cej.2021.130507
  • Zhu, L., Shi, Z. and Deng, L., 2021, Enhanced heterogeneous degradation of sulfamethoxazole via peroxymonosulfate activation with novel magnetic MnFe2O4/GCNS nanocomposite. Colloids and Surfaces A: Physicochemical and Engineering Aspects 621, 126531. doi: 10.1016/j.colsurfa.2021.126531
  • Borowska, E., Gomes, J., Martins, R.C., Quinta-Ferreira, R.M., Horn, H. and Gmurek, M., 2019, Solar photocatalytic degradation of sulfamethoxazole by TiO2 modified with noble metals. Catalysts 9(6), 500. doi: 10.3390/catal9060500

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.