866
Views
20
CrossRef citations to date
0
Altmetric
Articles

A new view about connections: the mathematical connections established by a teacher when teaching the derivative

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1231-1256 | Received 27 Nov 2019, Published online: 15 Sep 2020

References

  • Acevedo, J. I. (2008). Fenómenos relacionados con el uso de metáforas en el discurso del profesor. El caso de las gráficas de funciones. [Phenomena related with the use of metaphors in teachers’ discourse] [Unpublished doctoral dissertation]. University of Barcelona.
  • Aguilar, S., & Barroso, J. (2015). La triangulación de datos como estrategia en investigación educativa [data triangulation as education researching strategy]. Píxel-Bit. Revista de Medios y Educación, 45(47), 73–88. https://doi.org/10.12795/pixelbit.2015.i47.05
  • Badillo, E. (2003). La Derivada como objeto matemático y como objeto de enseñanza y aprendizaje en profesores de matemática de Colombia. [The Derivative as a mathematical object and as an object of teaching and learning in mathematics teachers in Colombia] [Unpublished doctoral dissertation]. Autonomous University of Barcelona.
  • Badillo, E., Azcárate, C., & Font, V. (2011). Análisis de los niveles de compresión de los objetos f’(a) y f’(x) en profesores de matemáticas [Analysis of Mathematics teachers’ level of understanding of the objects f’(a) and f’(x)]. Enseñanza de las Ciencias, 29(2), 191–206. https://doi.org/10.5565/rev/ec/v29n2.546
  • Bazzani, L. (2001). From grounding metaphors to technological devices: A call for legitimacy in school mathematics. Educational Studies in Mathematics, 47(3), 259–271.
  • Borji, V., Font, V., Alamolhodaei, H., & Sánchez, A. (2018). Application of the complementarities of two theories, APOS and OSA, for the analysis of the university students’ understanding on the graph of the function and its derivative. EURASIA Journal of Mathematics, Science and Technology Education, 14(6), 2301–2315. https://doi.org/10.29333/ejmste/89514
  • Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77–101. https://doi.org/10.1191/1478088706qp063oa
  • Businskas, A. M. (2008). Conversations about connections: How secondary mathematics teachers conceptualize and contend with mathematical connections [Unpublished doctoral dissertation]. Faculty of Education-Simon Fraser University.
  • Caldwell, K., & Atwal, A. (2005). Non-participant observation: Using video tapes to collect data in nursing research. Nurse Researcher, 13(2), 42–54. https://doi.org/10.7748/nr.13.2.42.s6
  • Cohen, L., Manion, L., & Morrison, K. (2007). Research methods in education. Routledge.
  • Cohen, L., Manion, L., & Morrison, K. (2011). Research methods in education. Routledge.
  • De Gamboa, G., & Figueiras, L. (2014). Conexiones en el conocimiento matemático del profesor: Propuesta de un modelo de análisis [connections in the teacher's mathematical knowledge: Proposal of an analysis model]. In M. T. González, M. Codes, D. Arnau, & T. Ortega (Eds.), Investigación en Educación Matemática XVIII (pp. 337–344). Salamanca.
  • Dolores-Flores, C., & García-García, J. (2017). Conexiones intramatemáticas y extramatemáticas que se producen al resolver problemas de Cálculo en contexto: un estudio de casos en el nivel superior [Intra-mathematical and extra-mathematical connections that occur when solving Calculus’ problems in context: A case study at a higher level]. Boletim de Educação Matemática, 31(57), 158–180. https://doi.org/10.1590/1980-4415v31n57a08
  • Dolores-Flores, C., Rivera-López, M. I., & García-García, J. (2019). Exploring mathematical connections of pre-university students through tasks involving rates of change. International Journal of Mathematics Education in Science and Technology, 50(3), 369–389. https://doi.org/10.1080/0020739X.2018.1507050
  • Edwards, L. (2009). Gestures and conceptual integration in mathematical talk. Educational Studies in Mathematics, 70(2), 127–141. https://doi.org/10.1007/s10649-008-9124-6
  • Eli, J. A., Mohr-Schroeder, M. J., & Lee, C. W. (2011). Exploring mathematical connections of prospective middle-grades teachers through card-sorting tasks. Mathematics Education Research Journal, 23(3), 297–319. https://doi.org/10.1007/s13394-011-0017-0
  • Eli, J. A., Mohr-Schroeder, M. J., & Lee, C. W. (2013). Mathematical connections and their relationship to mathematics knowledge for teaching geometry. School Science and Mathematics, 113(3), 120–134. https://doi.org/10.1111/ssm.12009
  • Evitts, T. (2004). Investigating the mathematical connections that preservice teachers use and develop while solving problems from reform curricula [Unpublished doctoral dissertation]. Pennsylvania State University College of Education. EE. UU.
  • Font, V. (2000). Procediments per obtenir expressions simbòliques a partir de gràfiques. Aplicacions a les derivades [Procedures for obtaining symbolic expressions from graphs: Applications in relation to the derivative] [Unpublished doctoral dissertation]. University of Barcelona.
  • Font, V. (2007). Una perspectiva ontosemiótica sobre cuatro instrumentos de conocimiento que comparten un aire de familia: particular/general, representación, metáfora y contexto [An ontosemiotic perspective on four instruments of knowledge that share a family air: Particular/general, representation, metaphor and context]. Educación matemática, 19(2), 95–128.
  • Font, V., & Acevedo, J. I. (2003). Fenómenos relacionados con el uso de metáforas en el discurso del profesor. El caso de las gráficas de funciones [Phenomena related to the use of metaphors in the teacher's speech. The case of the graphs of functions]. Enseñanza de las Ciencias, 21(3), 405–418.
  • Font, V., Bolite, J., & Acevedo, J. (2010). Metaphors in mathematics classrooms: Analyzing the dynamic process of teaching and learning of graph functions. Educational Studies in Mathematics, 75(2), 131–152. https://doi.org/10.1007/s10649-010-9247-4
  • Font, V., Giménez, J., Larios, V., & Zorrilla, J. F. (2012). Competencias del profesor de matemáticas de secundaria y bachillerato [Math teachers’ competence of secondary and high school]. Edicions Universitat Barcelona.
  • Font, V., Godino, J. D., Planas, N., & Acevedo, J. I. (2010). The object metaphor and synecdoche in mathematics classroom discourse. For the Learning of Mathematics, 30(1), 15–19.
  • Fuentealba, C., Badillo, E., & Sánchez-Matamoros, G. (2019). Identificación y caracterización de los subniveles de desarrollo del esquema de derivada [Identification and characterization of the development sub-levels of the derivative schema]. Enseñanza de las Ciencias, 37(2), 63–84. https://doi.org/10.5565/rev/ensciencias.2518
  • Fuentealba, C., Badillo, E., Sánchez-Matamoros, G., & Cárcamo, A. (2018). The understanding of the derivative concept in higher education. EURASIA Journal of Mathematics, Science and Technology Education, 15(2), 1–15. https://doi.org/10.29333/ejmste/100640
  • Fuentealba, C., Sánchez-Matamoros, G., & Badillo, E. (2015). Análisis de tareas que pueden promover el desarrollo de la comprensión de la derivada [Analysis of tasks that can promote the development of understanding of the derivative]. Uno: Revista de Didáctica de las Matemáticas, 71, 72–78.
  • García-García, J. (2018). Conexiones matemáticas y concepciones alternativas asociadas a la derivada y a la integral en estudiantes del preuniversitario [Mathematical connections and alternative conceptions associated with the derivative and the integral in pre-university students] [Unpublished doctoral dissertation]. Autonomous University of Guerrero.
  • García-García, J., & Dolores-Flores, C. (2018). Intra-mathematical connections made by high school students in performing Calculus tasks. International Journal of Mathematical Education in Science and Technology, 49(2), 227–252. https://doi.org/10.1080/0020739X.2017.1355994
  • García-García, J., & Dolores-Flores, C. (2019). Pre-university students’ mathematical connections when sketching the graph of derivative and antiderivative functions. Mathematics Education Research Journal, https://doi.org/10.1007/s13394-019-00286-x
  • García-García, J., & Dolores-Flores, C. (2020). Exploring pre-university students’ mathematical connections when solving Calculus application problems. International Journal of Mathematical Education in Science and Technology, doi: 10.1080/0020739X.2020.1729429
  • García-García, J. G. (2019). Escenarios de exploración de conexiones matemáticas [Mathematical connection exploration scenarios]. Números: Revista de didáctica de las matemáticas, 100, 129–133.
  • Hanke, E. (2018). A function is continuous if and only if you can draw its graph without lifting the pen from the paper’–concept usage in proofs by students in a topology course. In V. Durand-Guerrier, R. Hochmuth, S. Goodchild, & N. M. Hogstad (Eds.), Proceedings of the second conference of the international network for didactic research in university mathematics (INDRUM 2018, 5–7 April 2018) (pp. 44–53). University of Agder and INDRUM.
  • Hashemi, N., Abu, M. S., Kashefi, H., & Rahimi, K. (2014). Undergraduate students’ difficulties in conceptual understanding of derivation. Procedia-Social and Behavioral Sciences, 143, 358–366. https://doi.org/10.1016/j.sbspro.2014.07.495
  • Hiebert, J., & Carpenter, T. (1992). Learning and teaching with understanding. In D. A. Grouws (Ed.), Handbook of research of mathematics teaching and learning (pp. 65–79). Macmillan.
  • Jayakody, G. N. (2015). University first year students’ discourse on continuous functions: A commognitive interpretation [Unpublished doctoral dissertation]. University Simon Fraser.
  • Johnson, M. (1987). The body in the mind: The bodily basis of meaning, imagination, and reason. Chicago University Press.
  • Koestler, C., Felton, M. D., Bieda, K. N., & Otten, S. (2013). Connecting the NCTM process standards and the CCSSM practices. National Council of Teachers of Mathematics.
  • Lacasta, E., & Pascual, J. R. (1998). Las funciones y los gráficos cartesianos [The functions and the cartesian graphs]. Síntesis.
  • Lakoff, G., & Núñez, R. (2000). Where mathematics comes from: How the embodied mind brings mathematics into being. Basic Books.
  • Mhlolo, M. K. (2012). Mathematical connections of a higher cognitive level: A tool we may use to identify these in practice. African Journal of Research in Mathematics, Science and Technology Education, 16(2), 176–191. https://doi.org/10.1080/10288457.2012.10740738
  • Mhlolo, M. K., Venkat, H., & Schäfer, M. (2012). The nature and quality of the mathematical connections teachers make. Pythagoras, 33(1), 1–9. https://doi.org/10.4102/pythagoras.v33i1.22
  • Millspaugh, R. P. (2006). From intuition to definition: Teaching continuity in first semester calculus. Problems, Resources, and Issues in Mathematics Undergraduate Studies, 16(1), 53–60.
  • National Council of Teachers of Mathematics [NCTM]. (2000). Principles and standards for school mathematics. National Council of Teachers of Mathematics.
  • National Council of Teachers of Mathematics [NCTM]. (2014). Principles to action: Ensuring mathematical success for all. Reston. National Council of Teachers of Mathematics.
  • National Research Council [NRC]. (2001). Adding it up: Helping children learn mathematics. In J. Kilpatrick, J. Swafford, & B. Findell (Eds.), Mathematics learning study committee, center for education, division of behavioral and social sciences and education (pp. 115–156). National Academy Press.
  • Núñez, R. E., Edwards, L. D., & Matos, J. F. (1999). Embodied cognition as grounding for situatedness and context in mathematics education. Educational Studies in Mathematics, 39(1–3), 45–65. https://doi.org/10.1023/A:1003759711966
  • Oehrtman, M. (2009). Collapsing dimensions, physical limitation, and other student metaphors for limit concepts. Journal for Research in Mathematics Education, 40(4), 396–426.
  • Özgen, K. (2013). Self-efficacy beliefs in mathematical literacy and connections between mathematics and real world: The case of high school students. Journal of International Education Research, 9(4), 305–316.
  • Pino-Fan, L., Godino, J. D., & Font, V. (2015). Una propuesta para el análisis de las prácticas matemáticas de futuros profesores sobre derivadas [A Proposal for the Analysis of Prospective Teachers’ Mathematical Practices on Derivatives]. Bolema. Boletim de Educação Matemática, 29(51), 60–89. https://doi.org/10.1590/1980-4415v29n51a04
  • Pino-Fan, L., Godino, J. D., & Font, V. (2018). Assessing key epistemic features of didactic mathematical knowledge of prospective teachers: The case of the derivative. Journal of Mathematics Teacher Education, 21, 63–94. https://doi.org/10.1007/s10857-016-9349-8
  • Pino-Fan, L., Guzmán, I., Font, V., & Duval, R. (2017). Analysis of the underlying cognitive activity in the resolution of a task on derivability of the absolute-value function: Two theoretical perspectives. PNA, 11(2), 97–124. http://hdl.handle.net/10481/44148
  • Presmeg, N. C. (1992). Prototypes, metaphors, metonymies, and imaginative rationality in high school mathematics. Educational Studies in Mathematics, 23(6), 595–610. https://doi.org/10.1007/BF00540062
  • Presmeg, N. C. (2005). Metaphor and metonymy in processes of semiosis in mathematics education. In M. Hoffmann, J. Lenhard, & F. Seeger (Eds.), Activity and sign: Grounding mathematics education (pp. 105–115). Springer.
  • Sari, F. K., Sudirman, S., & Chandra, T. D. (2018a). Proses Koneksi Matematis Siswa SMP dalam Menyelesaikan Soal Cerita. Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan, 3(6), 715–722. http://doi.org/10.17977/jptpp.v3i6.11116
  • Sari, P., Hadiyan, A., & Antari, D. (2018b). Exploring derivatives by means of GeoGebra. International Journal on Emerging Mathematics Education, 2(1), 65–78. https://doi.org/10.12928/ijeme.v2i1.8670
  • Sánchez-Matamoros, G., Fernández, C., & Llinares, S. (2015). Developing pre-service teachers’noticing of students’understanding of the derivative concept. International Journal of Science and Mathematics Education, 13(6), 1305–1329. https://doi.org/10.1007/s10763-014-9544-y
  • Shell Centre for Mathematical Education. (1990). El lenguaje de funciones y gráficas [The language of functions and graphs]. Bilbao.
  • Smith, M., Bill, V., & Raith, M. L. (2018). Promoting a conceptual understanding of mathematics. Mathematics Teaching in the Middle School, 24(1), 36–43. https://doi.org/10.5951/mathteacmiddscho.24.1.0036
  • Spivak, M. (1992). Cálculo infinitesimal [infinitesimal Calculus]. Reverté.
  • Yavuz-Mumcu, H. (2018). Matematiksel ilişkilendirme becerisinin kuramsal boyutta incelenmesi: türev kavramı örneği. Turkish Journal of Computer and Mathematics Education, 9(2), 211–248. https://doi.org/10.16949/turkbilmat.379891
  • Zandieh, M., Ellis, J., & Rasmussen, C. (2017). A characterization of a unified notion of mathematical function: The case of high school function and linear transformation. Educational Studies in Mathematics, 95(1), 21–38. https://doi.org/10.1007/s10649-016-9737-0
  • Zandieh, M. J., & Knapp, J. (2006). Exploring the role of metonymy in mathematical understanding and reasoning: The concept of derivative as an example. The Journal of Mathematical Behavior, 25(1), 1–17. https://doi.org/10.1016/j.jmathb.2005.11.002
  • Zandieh, M. J., & Knapp, J. (2018a). Metonymy and metaphor: How language can impact understanding of mathematical concepts (Part I). The Journal of the American Mathematical Association of Two-Year Colleges, 9(2), 23–29.
  • Zandieh, M. J., & Knapp, J. (2018b). Metonymy and metaphor: How language can impact understanding of mathematical concepts (Part II). The Journal of the American Mathematical Association of Two-Year Colleges, 9(3), 21–26.
  • Zengin, Y. (2019). Development of mathematical connection skills in a dynamic learning environment. Education and Information Technologies, 24(3), 2175–2194. https://doi.org/10.1007/s10639-019-09870-x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.