2,822
Views
0
CrossRef citations to date
0
Altmetric
Articles

The role of generating questions in mathematical modeling

Pages 827-859 | Received 29 Aug 2019, Published online: 11 Oct 2021

References

  • Aydin-Güç, F., & Baki, A. (2019). Evaluation of the learning environment designed to develop student mathematics teachers’ mathematical modelling competencies. Teaching Mathematics and Its Applications, 38(4), 191–215. https://doi.org/10.1093/teamat/hry002
  • Barrett, G. B. (2000). The North Carolina school of Science and mathematics. Contemporary precalculus through application (Second Edition). Everyday Learning Corporation.
  • Becker, J. P., Silver, E. A., Kantowski, M. G., Travers, K. J., & Wilson, J. W. (1990). Some observations of mathematics teaching in Japanese elementary and junior high schools. Arithmetic Teacher, 38(2), 12–21. https://doi.org/10.5951/AT.38.2.0012
  • Blomhøj, M., & Jensen, H. (2007). What’s all the fuss about competencies? Experiences with using a competence perspective on mathematics education to develop the teaching of mathematical modelling. In W. Blum, P. Galbraith, Henn, & M. Niss (Eds.), Modelling and applications in mathematics education (pp. 45–56). Springer.
  • Blum, W. (1993). Mathematical modelling in mathematics education and instruction. In T. Breiteig, I. Huntley, & G. Kaiser (Eds.), Teaching and learning mathematics in context (pp. 3–14). Ellis Horwood.
  • Blum, W., & Borromeo Ferri, R. (2009). Mathematical modelling: Can it be taught and learnt? Journal of Mathematical Modelling and Application, 1(1), 45–58.
  • Blum, W., & Leiβ, D. (2007). How do students and teachers deal with mathematical modelling problems? The example “filling up”. In C. Haines, W. Blum, & S. Khan (Eds.), Mathematical modelling (ICTMA 12): education, engineering and economics (pp. 222–231). Horwood Publishing.
  • Bonotto, C. (2010). Realistic mathematical modelling and problem posing. In R. Lesh, P. Galblaith, C. Hains, & A. Hurford (Eds.), Modelling students’ mathematical competencies (pp. 399–408). Springer.
  • Borromeo Ferri, R. (2006). Theoretical and empirical differentiations of phases in the modelling process. Zentralblatt für Didaktik der Mathematik, 38(2), 86–95. https://doi.org/10.1007/BF02655883
  • Borromeo Ferri, R. (2007). Modelling problems from a cognitive perspective. In C. Hains, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modelling education, engineering, and economics (pp. 260–270). Ellis Horwood.
  • Burkhardt, H., Treilibs, V., Stacey, K., & Swan, M. (1980). Beginning to tackle real problems, A 6–12 lesson “starter pack” for introducing some mathematics modelling into the mathematics curriculum. Shell Centre for Mathematical Education.
  • English, L. D., Fox, J. L., & Watters, J. J. (2005). Problem posing and solving with mathematical modelling. Teaching Children Mathematics, 12(3), 156–163. https://doi.org/10.5951/TCM.12.3.0156
  • Frejd, P., & Ärlebäck, J. (2011). First results from a study investigating Swedish upper secondary students’ mathematical modelling competencies. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), Trends in the teaching and learning of mathematical modelling (pp. 407–416). Springer.
  • Fujimaki, G. (2005). 体圧分布のパターン変動と座り心地 [sitting comfort and the change of body pressure distribution]. [Doctoral dissertation, Waseda University]. Waseda University Repository. http://hdl.handle.net/2065/2975
  • Galbraith, P. (2015). ‘Noticing’ in the practice of modelling as real-world problem solving. In Kaiser, G., & Henn, H., (Eds.), Werner Blum und seine Beitrdge zum Modellieren im Mathematikunterricht [Werner Blum and his contributions to modeling in mathematics lessons] (pp. 151–166). Springer Fachmedien.
  • Galbraith, P., & Clatworthy, N. (1990). Beyond standard models: Meeting the challenge of modelling. Educational Studies in Mathematics, 21(2), 137–163. https://doi.org/10.1007/BF00304899
  • Galbraith, P., & Stillman, G. (2006). A framework for identifying student blockages during transitions in the modelling process. Journal für Mathematik-Didaktik, 38(2), 143–162. https://doi.org/10.1007/BF02655886
  • Galbraith, P., Stillman, G., & Brown, J. (2017). The primary of ‘noticing’: A key to successful modelling. In G. Stillman, W. Blum, & G. Kaiser (Eds.), Mathematical modelling and applications: Crossing and researching boundaries in mathematics education (pp. 83–94). Springer.
  • Google. (n.d.). [Map A]. Retrieved May 21, 2021, from: https://www.google.co.jp/maps/@35.7892152,139.5958598,164a,35y,90 h/data=!3m1!1e3.
  • Google. (n.d.). [Map B]. Retrieved May 21, 2021, from: https://www.google.co.jp/maps/@35.7894194,139.5956817,69a,35y,90 h/data=!3m1!1e3.
  • Hall, G. (1984). The assessment of modelling projects. In J. S. Berry, D. N. Burghes, I. D. Huntley, D. J. G. James, & A. O. Moscardini (Eds.), Teaching and applying mathematical modelling (pp. 143–148). Ellis Horwood.
  • Ikeda, T., & Stephens, M. (1998). The influence of problem format on students’ approaches to mathematical modelling. In P. Galbraith, W. Blum, G. Booker, & I. Huntley (Eds.), Mathematical modelling: Teaching and assessing in a technology-rich world (pp. 223–232). Ellis Horwood.
  • Jankvisk, U., & Niss, M. (2020). Upper secondary students’ difficulties with mathematical modelling. International Journal of Mathematical Instruction in Science and Technology, 51(4), 467–496. https://doi.org/10.1080/0020739X.2019.1587530
  • Japan Soft Tennis Association. (2004). 新版 ソフトテニス指導教本 [Soft Tennis Instructional Book]. Taishukan Shoten.
  • Kaiser, G. (1995). Realitätsbezüge im mathematikunterricht–Ein Überblick über die aktuelle und historische diskussion [reality Reference in mathematics education – An overview of the current and historical discussion]. In G. Graumann, T. Jahnke, & G. Kaiser (Eds.), Materialien für einen realitätsbezügenen Mathematikunterricht Vol. 2 [materials for a realistic mathematics class Vol. 2] (pp. 66–84). Bad Salzdetfurthü.
  • Kaiser, G. (2007). Modelling and modelling competencies in school. In C. Haines, W. Blum, & S. Khan (Eds.), Mathematical modelling: Education, engineering, and economics (pp. 110–119). Horwood.
  • Maaβ, K. (2006). What are modelling competencies? Zentralblatt für Didaktik der Mathematik, 38(2), 113–142. https://doi.org/10.1007/BF02655885
  • Miwa, T. (1986a). Mathematical model making in problem-solving - Japanese pupils’ performance and awareness of assumptions. In J. Becker, & T. Miwa (Eds.), Proceedings of the U.S-Japan seminar on mathematical problem solving (pp. 401–417). East-West Centre.
  • Miwa, T. (1986b). 数学的モデル化と教材開発 [Mathematical modelling and develop-ment of teaching materials]. In Miwa T. (Ed.), 学校教育における数学的モデル化の教材開発 [Development of teaching materials of mathematical modelling in school mathematics] (pp. 22–28). Report for Scientific Grant by Japan Society for the Promotion of Science. No.59580177.
  • National Institute for Educational Policy Research. (2013). 平成25年度全国学力・学習状況調査 [The National Assessments of Academic Ability]. National Institute for Educational Policy Research.
  • Niss, M., & Blum, W. (2020). The learning and teaching of mathematical modelling. Routledge.
  • OECD. (2009). PISA 2009 Assessment framework: Key competencies in reading, mathematics, and science. Programme for International Student Assessment.
  • Okamura, S. (1968). スプリンクラー散水に関する基礎的研究 [Theoretical study on the sprays emitted by single sprinklers]. Memoirs of the Faculty of Engineering, Kogashima University, 14, 1–71.
  • Palm, T. (2008). Impact of authenticity on sense making in word problem-solving. Educational Studies in Mathematics, 67(1), 37–58. https://doi.org/10.1007/s10649-007-9083-3
  • Pollak, H. (1979). The interaction between mathematics and other school subjects. In UNESCO (Ed.), New trends in mathematics teaching IV (pp. 232–248). UNESCO.
  • Sekido, S. (2014, April 23). グらウンドカラ砂ぼこり. 学校, 近隣住民も困惑 [Dust and sand from the ground. School and neighbors are confused]. Ryukyu Simpo. https://ryukyushimpo.jp/news/prentry-224168.html
  • Stigler, J. W., & Hiebert, J. (1999). The teaching gap: Best ideas from the world’s teachers for improving education in the classroom. The Free Press.
  • Stillman, G. (2000). Impact of prior knowledge of task context on approaches to applications tasks. The Journal of Mathematical Behaviour, 19(3), 333–361. https://doi.org/10.1016/S0732-3123(00)00049-3
  • Stillman, G. (2015). Problem finding and problem posing for mathematical modelling. In N. H. Lee, & K. E. D. Ng (Eds.), Mathematical modelling – from theory to practice (pp. 41–56). World Scientific.
  • Stillman, G. (2019). State of the art on modelling in mathematics education - lines of inquiry. In G. Stillman, & J. Brown (Eds.), Lines of inquiry in mathematical modelling research in education (pp. 1–20). Springer.
  • Swetz, F., & Hartzler, J. S. (1991). Mathematical modeling in the secondary school curriculum. NCTM.
  • Treilibs, V., Burkhardt, H., & Low, B. (1980). Formulation processes in mathematical modelling. Shell Centre for Mathematical Education.