23
Views
7
CrossRef citations to date
0
Altmetric
Research Article

BLOOD BRAIN BARRIER IN RIGHT- AND LEFT-PAWED FEMALE RATS ASSESSED BY A NEW STAINING METHOD

, , , &
Pages 1037-1046 | Published online: 07 Jul 2009

  • Barncoud. P., Bnonclni. G.,& Van der Loos. H. (1994). Vision influences paw preference in mice. Behavioral Brain Research. 62. 157-164.
  • Betanciur. C., Neveu, P. J., & Muai, M. (.1991). Strain and sex differences in the degree of paw preference in mice. Behavioral Brain Research. 45. 97-101.
  • Bogren. H. G., Buonocore. M. H., & Gu. W. Z. (1994). Carotid ami vertebral artery blood flow in left- and right-handed healthy subjects measured with MR velocity mapping.Magnetic Resonance Imaging, 4. 37-42.
  • BiddIe, F. G., & Fales, B. A. (1996). The degree of lateralization uf paw usage (handed--ness) in (the mouse is defined by three major phenotypes. Behavioral Genetics. 26.391-406.
  • Bulman-Fleming. M. B Bryden, M. P., & Rogers. T. T. (1997). Mouse paw preference: effects of Variations in testing protocol, Behavioral Brain Research, 86. 79 -87.
  • Castro-Alamancos, M. A., &. Borrell. J. (1993). Reversal of paw preference afteir ablation of the preferred forelimb primary motor cortex representation of the rat depends on the size of the forelimb representation. Neuroscience. 52. 637-644.
  • Ehrlich. P. (1885). Dan Sauerstofflbedurfnis des Organisms: Eine farbernanalytischen Studie(Vol. 8. pp. 167). Hirschwald.
  • Fabre-Thorpe, M., Fagot. J., &Vauclair. J. (1991). Lateralization in cuts in a pointing task of the anterior limb towards a moving target. Comptes rendus de f Academi des sciences. Serie III. Sciences de Ia vie. & 13. 427-433.
  • Fabre-Thorpe. M., Fagot, J., Lorinez. E., i.evesque. h. 7 Vauclair, J. (1993). Laterality in cats: Paw preference and performance in a visuomotor activity. Coritex. 29. 15-24.
  • Gloor. S. M., Wachtel. M., Bolliger. M. F., Ishihara. H. Landmann, R., & Frei, K. (2001).Molecular and cellular permeability control at the blood-brain barrier. Brain Reseach Reviews. 36, 258-264.
  • Hindman. B. J., Dexter, F., Subieta, A., Smith, T., & Culkomp. J. (1990). Brain injury after cerebral arterial air embolism in the rabbit as determined by triphenyltetrazolium staining. Anesthesiology. 90. 1462-1473.
  • Klingelhofer, J., Malzander. G., Sander. D., Schwarze, D., Boecker, H., & Bischoff, C. (1997). Assessment of functional hemispheric asymmetry by bilateral simultaneous cerebral Wood flow velocity monitoring. Journal of Cerebral Blood Flow and Me-- tabolism. 17. 577-585.
  • Kawashima, R., ltoh. H., Ono. S., Satoh. K., Furumoto, S., Gotoh. R., et al. (1996).Changes in regional cerebral blood flow during self-paced arm and finger movements.A PET study. Brain Research, 16. 141-148.
  • Lorinez, E. & Fabre-Thorpe. M. (1994). Effect of practice on paw preference in a roach-- ing task in cats. Comptes rendus de l'Academie den sciences. Serie & Sciences de Ia vie. 317, 1081-1088.
  • Lorincz. E., & Fabre-Thorpe, M. (1996). Shift of laterality and compared analysis of paw performances in cats during practice of a visuomotor task, Journal of Comparative Psychology. 110. 307-315.
  • Martin. D., & Webster. W. G. (1974). Paw preference shifts in the rat following forced practice. Physiology and Behavior. 13. 745-748.
  • Mayhan, W. G. (2000). Nitric oxide donor-induced increase in permeability of the bloodbrain barrier. Brain Research. 866. 101-108.
  • Mayhan. W. C. (2001 ). Regulation of blood-brain barrier permeability. Microcirculation.8. 89-104.
  • McManus. 1. C. (1992). Are paw preference differences in HI and LO mice the result of specific genes or of heterosis and fluctuating asymmetry? Behavioral Genetics. 22.435-451.
  • Ormakhova, N. A. (1989). Sexual differences in certain forms of motor asymmetry in rats.Zhurnal evolinrsionnoi biakhimli i fiziolooii, 25, 623-627.
  • Perlmutter. J. S., Powers, W. J., Herscovitch, P., Fox. P. T., & Raichle. M. E. (1987).Regional asymmetries of cerebral blood flow, blood volume, and oxygen utilization and extraction in normal subjects. Journal of Cerebral Blood FIow and Metabolism, 7.64-67.
  • Risberg, J., Halsey. J. H., Wills. E. L., 7 Wilson. E M. (1975). Hemispheric specializa-- tion in normal man studied by bilateral measurements of the regional cerebral blood flow. A study with the 133-Xc inhalation technique. Brain, 98. 511-524.
  • Rogers. T. T. & Bulman-FIeming. M. B. (1998). Arousal mediates relations among medial paw preference, lateral paw preference, and spatial preference in the mouse.Behavioral Brain Research, 93. 51-62.
  • Shibasaki, H., Sadato, N., Lyshkow, H., Yonekura. Y., Honda, M., Nagamine. T., Suwazono.S., Magata. Y., Ikeda, A., Miyazaki, M_ et al. (1993). Both primary motor cortex and supplementary motor area play an important role in complex finger movement. Brain, 116. 1387-1398.
  • Takeda. S., & Endo, A. (1993). Paw preference in mice: A reappraisal. Physiology and Behavior 53. 727-730.
  • Tan, U. (1987). Paw preferences in dogs International Journal of Neuroscience, 32, 825-829.
  • Tan. U. (1993). Distribution of paw preference in mongrel and tortoise-shell cats and the relation of hemispheric weight to paw preference: Sexual dimorphism in paw use and its relation to hemispheric weight, late motional Journal of Neuroscience, 70, 199-212.
  • Tan. U.,& Caliskan. S. (1987). Allometry and asymmetry in the dog brain: The right hemisphere is heavier regardless of paw preference. International Journal of Neuro-- science. 35, 189-194.
  • Tan. U., & Kutlu. N. (1991). The distribution of paw preference in right-, left-, and mixed-pawed male and female cats: The rule of a female right-shift factor in handed-ness. International Journal tof Neuroscientce 59. 219-229.
  • Ton. U., Yaprak, M., & Kutlu. N. (1990). Paw preference in cats: Distribution and sex differences. International Journal of Neuroscience. 50. 195-208.
  • Waters. N. S., & Denenberg. V. H. (1991). A measure of lateral paw preference in themouse. Physiology and Behavior, 50, 853-856.
  • Waters. N. S., & Denenberg, V. H. (1994). Analysis of two measures of paw preference in a large population of inbred mice. Behavioral Brain Research. 63. 195-204.
  • Whishaw. I. Q., Tomic. J. A., & Ladowsky, R. L. (1990). Red nucleus lesions do not affect limb preference or use. but exacerbate the exaberate the effect of motor cortex lesions on grasping in the rat. Behavioral Brain Research. 40, 131-144.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.