31
Views
4
CrossRef citations to date
0
Altmetric
Original

MAGNETIC STIMULATION OF THE BRAIN INCREASE Na+, K+-ATPase ACTIVITY DECREASED BY INJECTION OF AlCl3 INTO NUCLEUS BASALIS MAGNOCELLULARIS OF RATS

, &
Pages 681-695 | Received 23 Mar 2005, Published online: 07 Jul 2009

REFERENCES

  • Alagone G., Bella R., Fem R., Carnemollo A., Pappolardo A., Constanzo E. M., Pennisi G. Transcranial magnetic stimulation in Alzheimer's disease: Motor cortex excitability and cognitive severity. Neuroscience Lett. 2001; 314(1–2)57–60, [CSA]
  • Arendash G. W., Millard W. J., Dunn A. J., Meyer E. M. Long-term neuropathological and neurochemical effects of nucleus basalis lesions in the rat. Science 1987; 238: 952–956, [INFOTRIEVE], [CSA]
  • Ashner M., Allen J. W. Mercuric chloride, but not methyl mercury, inhibits glutamine synthesise activity in primary cultures of cortical astrocytes. Brain Res. 2001; 891(1–2)148–57, [CSA]
  • Bardasano J. C. The pineal gland and magnetic fields. Universidad de Alacala de Menares, Madrid 1989
  • Bindera C., Simplaceanu T., Popescu S. T. The effect of magnetic fields on Na+ transport through human erythrocyte membranes. Studia Universitatis Babes. Boliat, Physica 2001, Special issue[CSA]
  • Blank M., Goodman R. Initial interactions in electromagnetic fields-induced biosynthesis. Journal of Cellular Physiology 2004; 199: 359–364, [INFOTRIEVE], [CSA], [CROSSREF]
  • Blank M., Soo L. Optimal frequencies for magnetic acceleration of cytochrome oxidase and Na, K-ATPase reactions. Bioelectrochemistry and Bioenergetics 2001; 53(2)171–174, [CSA]
  • Brown F. A. A hypothesis for extrinsic timing of circadian rhythm. Canadian Journal of Biology 1969; 47: 287–298, [CSA]
  • Cauhan N. B., Lee J. M., Siegel G. J. Na, K-ATPase mRNA level and plaque load in Alzheimer's disease. J. Mol. Neurosci. 1997; 9(3)151–166, [CSA]
  • Coyle J. T., Price D. L., DeLong R. Alzheimer's disease: A disorder of cortical cholinergic innervations. Science 1983; 219: 1184–1190, [INFOTRIEVE], [CSA]
  • Davidson M., Bastiaens L., Davis B. M., Shah M. B., Davis K. L. Endocrine changes in Alzheimer's disease. Neurologic Clinics 1988; 6: 147–157, [CSA]
  • de Carvalho M., de Mendonca A., Miranda P. C., Garcia C., Luis M. L. Magnetic stimulation in Alzheimer's disease. J. Neurol. 1997; 244(5)304–307, [INFOTRIEVE], [CSA], [CROSSREF]
  • de la Torre J. C. Homodynamic consequences of deformed microvessels in the brain in Alzheimer's disease. Ann. N.Y. Acad. Sc. 1997; 826: 75–91, [CSA]
  • Doge J. T., Miltchei C., Hanham D. J. The preparation and chemical characteristics of haemoglobin free ghosts on human erythrocytes. Arch. Biophys. 1961; 100: 119–126, [CSA], [CROSSREF]
  • Dubois B., Mayo W., Agid Y., Le Moal M., Simon H. Profound disturbances of spontaneous and learned behaviours following lesions of the nucleus basalis magnocellularis in the rat. Brain Research 1985; 338: 249–258, [INFOTRIEVE], [CSA], [CROSSREF]
  • Ellman G. L., Courtney K. D., Andres V., Jr., Fetherstone R. M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961; 7: 88–96, [INFOTRIEVE], [CSA], [CROSSREF]
  • Erlich S. S., Apuzzo M. J. The pineal gland: Anatomy, physiology, and clinical significance. Journal of Neurosurgery 1985; 63: 321–341, [INFOTRIEVE], [CSA]
  • Flicker C., Dean R. L., Watkins D. L., Fisher S. K, Bartus R. T. Behavioural and neurochemical effects following neurotoxic lesions of a major cholinergic input to the cerebral cortex in the rat. Pharmacology Biochemistry and Behavior 1983; 18: 973–981, [CSA]
  • Garton M. J., Keir G., Vijaya-Lakshami M., Tompson J. Age-related changes in cerebrospinal fluid protein concentrations. Journal of Neurosurgical Science 1991; 104: 74–80, [CSA], [CROSSREF]
  • Gartzke J., Lange K. Cellular target of weak magnetic fields: Ionic conduction along filaments of microvilli. Am. J. Physiol. Cell. Physiol. 2002; 283(5)C1333–1346, [INFOTRIEVE], [CSA]
  • Haspel P., Linjen R., Amergy A. Erythrocyte cations and Na, K-ATPase pump activity in athletes and sedentary subjects. Eur. J. Appl. Physiol. Occup. Physiol. 1986; 55(1)249, [CSA]
  • Hepler D. J., Wenk G. L., Gribbs B. L., Olton D. S., Coyle J. T. Memory impairments following basal forebrain lesions. Brain Research 1985; 346: 8–14, [INFOTRIEVE], [CSA], [CROSSREF]
  • Hikmet K., Perntgur O., Baria O. Comparison of activities of Na, K-ATPase in brains of rats. Gerontology 2002; 48: 279–281, [CSA], [CROSSREF]
  • Jovanova-Nesic K., Vujic D. Magnetic brain stimulation and humoral immune response in the rat with lesioned anterior hypothalamus. Yugoslav Physiologica et Pharmacologica Acta, Proceedings of the 14th Congress Yugoslav Physiological Society, Belgrade, Sept., 20–241988, 163–165
  • Jovanova-Nesic K., Skokljev A. Magnetic brain stimulation and immune response in the rat with lesioned brain structure. Acupuncture & Electro-Therapeutic Res. Int. J. 1990; 15: 27–35, [CSA]
  • Kirkcaldie M. T., Pridmore S. A., Pascual L. A. Transcranial magnetic stimulation as therapy for depression and other disorders. Aust. NZJ Psychiatry 1997; 31(2)264–272, [CSA]
  • Krause D. N., Dubocovich M. L. Regulatory sites in the melatonin system of mammals. Trends Neurosci. 1990; 13: 464–470, [INFOTRIEVE], [CSA], [CROSSREF]
  • Kvitnickaya-Ruzhova T. Y., Shapenko A. L. A comparative ultracythochemical and biochemical study of the choroids plexus ATPase in the aging brain. Tsitologya 1992; 34: 81–87, [CSA]
  • Liepert J., Bar K. J., Meske U., Weiller C. Motor cortex disinhibition in Alzheimer's disease. Clin. Neurophysiol. 2001; 112(8)1436–1441, [INFOTRIEVE], [CSA], [CROSSREF]
  • Liguri G., Taddei N., Nassi P., Latorraca S., Nediani C., Sorbi S. Changes in Na, K-ATPase, Ca2+-ATPase and some soluble enzymes related to energy metabolism in brains of patients with Alzheimer's disease. Neurosci. Lett. 1990; 112: 338–342, [INFOTRIEVE], [CSA], [CROSSREF]
  • Lowry O. H., Rosenbrough N. J., Farr A. K., Randall R. J. Protein measurement with the folic phenol reagent. J. Biol. Chem. 1951; 193: 265–275, [INFOTRIEVE], [CSA]
  • Mattson M. P. Modification of ion homeostasis by lipid peroxidation: Roles in neuronal degeneration and adaptive plasticity. TINS 1998; 21: 53–57, [INFOTRIEVE], [CSA]
  • Mesulam M. M., Geula C., Moran M. A. Anatomy of cholinesterase inhibition in Alzheimer's Disease: Effect of physostigmine and tetrahydroaminoacridine on plaques and tangles. Annals of Neurology 1987; 45: 345–349, [CSA]
  • Michaelis M. L., Johe K., Kitos T. E. Age-dependent alterations in synaptic membrane systems for Ca2+ regulation. Mechanisms of Aging and Development 1984; 25: 215–225, [CSA], [CROSSREF]
  • Miyamoto M., Shintani M., Nagaoka A., Nagawa Y. Lesioning of the rat basal forebrain leads to memory impairments in passive and active avoidance tasks. Brain Research 1985; 328: 97–104, [INFOTRIEVE], [CSA], [CROSSREF]
  • Paxinos G., Watson C. The rat brain in streotaxic coordinates. Academic Press, Sydney 1982
  • Pellerin L., Nouvelot A. Focal cerebral ischemia induces a decrease in activity and a shift in ouabain affinity of Na, K-ATPase isoforms without modification in mRNA and protein expression. Brain Res. 1999; 819: 132–142, [INFOTRIEVE], [CSA], [CROSSREF]
  • Pennisi G. Transcranial magnetic stimulation in Alzheimer's disease: Motor cortex excitability and cognitive severity. Neuroscei Lett. 2001; 314(1–2)57–60, [CSA]
  • Pepin J. L., Bogacz D., Delwaide P. J. Motor cortex inhibition is not impaired in patients with Alzheimer's disease: Evidence from paired transcranial magnetic stimulation. J. Neurol. Science 1999; 170(2)119–123, [CSA], [CROSSREF]
  • Perretti A., Grossi D., Fragassi N., Lanzillo B., Nolanom M., Santoro L. Evaluation of the motor cortex by magnetic stimulation in patients with Alzheimer's disease. J. Neurol. Sci. 1996; 135(1)31–7, [INFOTRIEVE], [CSA], [CROSSREF]
  • Perry E. K. The cholinergic hypothesis–ten years on. British Medical Bulletin 1986; 42: 63–69, [INFOTRIEVE], [CSA]
  • Popovic M., Jovanova-Nesic K., Bokonjic D., Dobric S., Popovic N., Rosic N. Effect of verapamil on spontaneous motor activity and two-way avoidance learning in nucleus basalis-lesioned rats. Europ. J. Neuroscience (suppl.) 1995; 8: 171, [CSA]
  • Popovic M., Jovanova-Nesic K., Popovic N., Bokonjic D., Rosic N., Rakic L. Behavioural and adaptive status in an experimental model of Alzheimer's disease in rats. International Journal of Neurosicence 1996; 86: 281–299, [CSA]
  • Popovic M., Popovic N., Jovanova-Nesic K., Bokonjic D., Dobric S., Rosic N. Open field behaviour in nucleus basalis magnocellularis-lesioned rats treated with physostigmine and verapamil. International Journal of Neurosicenec 1997a; 91(3–4)181–188, [CSA]
  • Popovic M., Popovic N., Jovanova-Nesic K., Bokonjic D., Dobric S., Kostic V., Rosic N. Effect of physostigmine and verapamil on active avoidance in an experimental model of Alzheimer's disease. International Journal of Neuroscience 1997b; 90: 87–97, [INFOTRIEVE], [CSA]
  • Rosen A. D., Lubowsky J. Magnetic field influence on the central nervous system function. Experimental Neurology 1987; 95: 679–687, [INFOTRIEVE], [CSA], [CROSSREF]
  • Roth M. The association of clinical and neurological findings and its bearing on the classification and etiology of Alzheimer's disease. British Medical Bulletin 1986; 42: 42–50, [INFOTRIEVE], [CSA]
  • Rudolph K., Witz-Justice A., Krauchi K., Feer H. Static magnetic fields decrease nocturnal pineal cAMP in the rat. Brain Research 1988; 446: 159–160, [INFOTRIEVE], [CSA], [CROSSREF]
  • Sandyk R. Regulatory sites in the melatonin system of mammals. Trends Neurosci. 1987; 13: 464–470, [CSA]
  • Sandyk R. Pineal melatonin functions and the depression of Parkinson's disease: A hypothesis. International Journal of Neuroscience 1990; 51: 73–77, [INFOTRIEVE], [CSA]
  • Sandyk R. The relationship of pineal calcification and melatonin secretion to the pathophysiology of tardive dyskinesia and Tourette's syndrome. International Journal of Neuroscience 1991; 58: 215–247, [INFOTRIEVE], [CSA]
  • Sandyk R., Iacono R. P. The relationship of the reticular system to the primary patho etiology of Parkinson's disease. International Journal of Neuroscience 1988; 42: 297–300, [INFOTRIEVE], [CSA]
  • Sandyk R., Fisher H. Increased incidence of neuroleptic-induced movement disorders in pinealectomized rats. International Journal of Neuroscience 1989; 48: 303–308, [INFOTRIEVE], [CSA]
  • Sandyk R., Anninos P. A., Tsagas N. Magnetic fields and seasonality of affective illness: Implication for therapy. International Journal of Neuroscience 1991; 58: 261–267, [INFOTRIEVE], [CSA]
  • Sandyk R, Derpapas K. Further observation on unique efficacy of picotesla magnetic fields in Parkinson's disease. International Journal of Neuroscience 1993; 69: 167–183, [INFOTRIEVE], [CSA]
  • Sandyk R., Iacono R. P. Rapid improvement of visuoperceptive functions by picotesla range magnetic fields in Parkinson's disease. International Journal of Neuroscience 1993a; 70: 233–254, [INFOTRIEVE], [CSA]
  • Sandyk R., Iacono R. P. Reversal of visual neglect in Parkinson’s disease by treatment with picotesla magnetic fields. International Journal of Neuroscience 1993b; 73: 93–107, [INFOTRIEVE], [CSA]
  • Sandyk R. Alzheimer’s disease: Improvement of visual memory and visuoconstructive performance by treatment with picotesla range magnetic fields. International Journal of Neuroscience 1994; 76: 185–225, [INFOTRIEVE], [CSA]
  • Sandyk R., Iacono R. P. Reversal of micrographia in Parkinson's disease by application of picotesla range magnetic fields. International Journal of Neuroscience 1994; 77: 77–84, [INFOTRIEVE], [CSA]
  • Sandyk R. Improvement in short-term visual memory by weak electromagnetic fields in Parkinson's disease. International Journal of Neuroscience 1995; 81: 67–82, [INFOTRIEVE], [CSA]
  • Saper C., German D., White C. Neuronal pathology in nucleus basalis and associated cell groups in senile dementia of the Alzheimer type: Possible role in cell loss. Neurology 1985; 35: 1089–1095, [INFOTRIEVE], [CSA]
  • Savalainen K. M., Loikkanen J., Erikaina S., Naarala J. Interactions of excitatory neurotransmitters and xenobiotics in excitatory and oxidative stress. Toxicol Letters 1998; 28(102–103)363–367, [CSA], [CROSSREF]
  • Siegel G. J., Chauhan N. B., Lee J. M. Age-related Na, K,-ATPase mRNA expression and Alzheimer's disease. Progress in Alzheimer's and Parkinson's Diseases, A. Fisher, I. Hanin, M. Yoshida. Plenum Press, New York 1998; 113–119
  • Smith G. Animal model of Alzheimer's disease: Experimental cholinergic denervation. Brain Research Review 1988; 13: 103–118, [CSA], [CROSSREF]
  • Sruys-Ponsar C., Guillard O., van den Bosch de Aguilar P. Effects of aluminium expose on glutamate metabolism: A possible explanation for its toxicity. Exp. Neurol. 2000; 163(1)157–164, [CSA], [CROSSREF]
  • Viani P., Cervato G., Fiorilli A., Cestaro B. Age-related differences in synaptosomal peroxidase damage and membrane proteins. J. Neurochem. 1991; 56: 253–258, [INFOTRIEVE], [CSA]
  • Wahal C., Wincour P. D. The relationship of chemical modification of membrane proteins and plasma lipoproteins to reduced membrane fluidity of erythrocytes from diabetic subjects. Eur. J. Clin. Biochem. 1992; 30: 513–519, [CSA]
  • Wever R. Einflus Schwacher Electro-magnetisher Felder and dieCircadiane Periodik des. Menschen Naturwissenschaften 1968; 55: 29–32, [CSA], [CROSSREF]
  • Xie T. D., Marzalek P., Chen Y. Y. Recognition and processing of randomness fluctuating electric signals by Na+, K+-ATPase. Biophysical Journal 1994; 67(245)1247–1251, [INFOTRIEVE], [CSA]
  • Zubenko G. S., Moosy J., Hanin I., Martinez J., Rao G. R., Koop U. Bilateral symmetry of cholinergic deficits in Alzheimer’s Disease. Archives of Neurology 1988; 54: 255–259, [CSA]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.