78
Views
31
CrossRef citations to date
0
Altmetric
Original

Neuroprotective Effects of Diazoxide and Its Antagonism by Glibenclamide in Pyramidal Neurons of Rat Hippocampus Subjected to Ischemia-Reperfusion-Induced Injury

, , , , &
Pages 1346-1361 | Published online: 09 Sep 2009

REFERENCES

  • Amadeu M. E., Abramowicz A. E., Chambers G., Cottrell J. E., Kass I. S. Etomidate does not alter recovery after anoxia of evoked population spikes recorded from the CA1 region of rat hippocampal slices. Anesthesiology 1998; 88: 1274–1280
  • Bajgar R., Seetharaman S., Kowaltowski A. J., Garlid K. D., Paucek P. Identification and properties of a novel intracellular (mitochondrial) ATP-sensitive potassium channel in brain. Journal of Biological Chemistry 2001; 276: 33369–33374
  • Ben-Ari Y., Krnjevic K., Crepel V. Activators of ATP-sensitive K+ channels reduce anoxic depolarization in CA3 hippocampal neurons. Neuroscience 1990; 37: 55–60
  • Daut J., Maier-Rudolph W., von Beckerath N., Mehrke G., Gunther K., Goedel-Meinen L. Hypoxic dilation of coronary arteries is mediated by ATP-sensitive potassium channels. Science 1990; 247: 1341–1344
  • Domoki F., Perciaccante J. V., Veltkamp R., Bari F., Busija D. W. Mitochondrial potassium channel opener diazoxide preserves neuronal-vascular function after cerebral ischemia in newborn pigs. Stroke 1999; 30: 2713–2718
  • Garcia de Arriba S., Franke H., Pissarek M., Nieber K., Illes P. Neuroprotection by ATP-dependent potassium channels in rat neocortical brain slices during hypoxia. Neuroscience Letters 1999; 273: 13–16
  • Hulsmann S., Kohling R., Greiner C., Moskopp D., Lucke A., Wassmann H., et al. Neuroprotection by 21-aminosteroids: Insights from latencies of anoxic terminal negativity in hippocampus slices of guinea pig. Neurological Research 1999; 21: 305–308
  • Kirino T. Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Research 1982; 239: 57–69
  • Lenzser G., Kis B., Bari F., Busija D. W. Diazoxide preconditioning attenuates global cerebral ischemia-induced blood-brain barrier permeability. Brain Research 2005; 1051: 72–80
  • Liang H. W., Xia Q., Bruce I. C. Reactive oxygen species mediate the neuroprotection conferred by a mitochondrial ATP-sensitive potassium channel opener during ischemia in the rat hippocampal slice. Brain Research 2005; 1042: 169–175
  • Liu Y., Kato H., Nakata N., Kogure K. Protection of rat hippocampus against ischemic neuronal damage by pretreatment with sub lethal ischemia. Brain Research 1992; 586: 121–124
  • Misao J., Hayakawa Y., Ohno M., Kato S., Fujiwara T., Fujiwara H. Expression of Bcl-2 protein, an inhibitor of apoptosis, and Bax, an accelerator of apoptosis, in ventricular myocytes of human hearts with myocardial infarction. Circulation 1996; 94: 1506–1512
  • Mourre C., Widmann C., Lazdunski M. Sulfonylurea binding sites associated with ATP-regulated K+ channels in the central nervous system: Autoradiographic analysis of their distribution and ontogenesis, and of their localization in mutant mice cerebellum. Brain Research 1990; 519: 29–43
  • Murata M., Akao M., O’Rourke B., Marban E. Mitochondrial ATP-sensitive potassium channels attenuate matrix Ca(2+) overload during simulated ischemia and reperfusion: Possible mechanism of cardioprotection. Circulation Research 2001; 89: 891–898
  • Osuka K., Watanabe Y., Usuda N., Nakazawa A., Tokuda M., Yoshida J. Modification of endothelial NO synthase through protein phosphorylation after forebrain cerebral ischemia/reperfusion. Stroke 2004; 35: 2582–2586
  • Pulsinelli W. A., Buchan A. M. The four-vessel occlusion rat model: Method for complete occlusion of vertebral arteries and control of collateral circulation. Stroke 1988; 19: 913–914
  • Rajapakse N., Shimizu K., Kis B., Snipes J., Lacza Z., Busija D. Activation of mitochondrial ATP-sensitive potassium channels prevents neuronal cell death after ischemia in neonatal rats. Neuroscience Letters 2002; 327: 208–212
  • Sharifi A. M., Baniasadi S., Jorjani M., Rahimi F., Bakhshayesh M. Investigation of acute lead poisoning on apoptosis in rat hippocampus in vivo. Neuroscience Letters 2002; 329: 45–48
  • Sharifi A. M., Schiffrin E. L. Apoptosis in vasculature of spontaneously hypertensive rats: Effect of an angiotensin converting enzyme inhibitor and a calcium channel antagonist. American Journal of Hypertension 1998; 11: 1108–1116
  • Shimizu K., Lacza Z., Rajapakse N., Horiguchi T., Snipes J., Busija D. W. MitoK(ATP) opener, diazoxide, reduces neuronal damage after middle cerebral artery occlusion in the rat. American Journal of Physiology (Heart and Circulation Physiology) 2002; 283: 1005–1011
  • Shimizu K., Rajapakse N., Horiguchi T., Payne R. M., Busija D. W. Neuroprotection against hypoxia-ischemia in neonatal rat brain by novel superoxide dismutase mimetics. Neuroscience Letters 2003; 346: 41–44
  • Solenski N. J., diPierro C. G., Trimmer P. A., Kwan A. L., Helm G. A. Ultrastructural changes of neuronal mitochondria after transient and permanent cerebral ischemia. Stroke 2002; 33: 816–824
  • Tremblay E., Zini S., Ben-Ari Y. Autoradiographic study of the cellular localization of (3H) glibenclamide binding sites in the rat hippocampus. Neuroscience Letters 1991; 127: 21–24
  • Wu L., Shen F., Lin L., Zhang X., Bruce I. C., Xia Q. The neuroprotection conferred by activating the mitochondrial ATP-sensitive K(+) channel is mediated by inhibiting the mitochondrial permeability transition pore. Neuroscience Letters 2006; 402: 184–189
  • Yokota N., Uchijima M., Nishizawa S., Namba H., Koide Y. Identification of differentially expressed genes in rat hippocampus after transient global cerebral ischemia using substractive cDNA cloning based on polymerase chain reaction. Stroke 2001; 32: 168–174
  • Zawar C., Plant T. D., Schirra C., Konnerth A., Neumcke B. Cell-type specific expression of ATP-sensitive potassium channels in the rat hippocampus. Journal of Physiology 1999; 514: 327–341

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.