980
Views
37
CrossRef citations to date
0
Altmetric
Review Article

The dopaminergic system dynamic in the time perception: a review of the evidence

, , , , , , , , , , , , , & show all
Pages 262-282 | Received 18 Jul 2017, Accepted 23 Sep 2017, Published online: 11 Oct 2017

References

  • Magnani B, Oliveri M, Frassinetti F. Exploring the reciprocal modulation of time and space in dancers and non-dancers. Exp Brain Res. 2014;232:3191–3199.
  • Herai T, Mogi K. Perception of temporal duration affected by automatic and controlled movements. Conscious Cogn. 2014;29:23–35.
  • Zhang L, Ptáček LJ, Fu YH. Diversity of human clock genotypes and consequences. Prog Mol Biol Transl Sci. 2013;119:51–81.
  • Wittmann M. The inner sense of time: how the brain creates a representation of duration. Nat Rev Neurosci. 2013;14(3):217–223.
  • Addyman C, Rocha S, Mareschal D. Mapping the origins of time: scalar errors in infant time estimation. Dev Psychol. 2014;30:a0037108.
  • van Rijn H, Kononowicz TW, Meck WH, et al. Contingent negative variation and its relation to time estimation: a theoretical evaluation. Front Integr Neurosci. 2011;5:91.
  • Shi Z, Müller HJ. Multisensory perception and action: development, decision-making, and neural mechanisms. Front Integr Neurosci. 2013;7:81.
  • Bonato M, Zorzi M, Umiltà C. When time is space: evidence for a mental time line. Neurosci Biobehav Rev. 2012;36:2257–2273.
  • Coull JT, Hwang HJ, Leyton M, et al. Dopamine precursor depletion impairs timing in healthy volunteers by attenuating activity in putamen and supplementary motor area. J Neurosci. 2012;32(47):16704–16715.
  • Balci F, Ludvig EA, Abner R, et al. Motivational effects on interval timing in dopamine transporter (DAT) knockdown mice. Brain Res. 2010;1325(14):89–99.
  • Coull JT, Cheng RK, Meck WH. Neuroanatomical and neurochemical substrates of timing. Neuropsychopharmacology. 2011;36(1):3–25.
  • Barzman D, Geise C, Lin P. Review of the genetic basis of emotion dysregulation in children and adolescents. World J Psychiatry. 2015;5(1):112–117.
  • Sysoeva OV, Tonevitsky AG, Wackermann J. Genetic determinants of time perception mediated by the serotonergic system. PLoS ONE. 2010;5(9):e12650.
  • Aghdaee SM, Battelli L, Assad JA. Relative timing: from behaviour to neurons. Phil Trans R Soc B. 2014;369:20120472.
  • Wiener M, Lohoff FW, Coslett HB. Double dissociation of dopamine genes and timing in humans. J Cogn Neurosci. 2011;23:2811–2821.
  • Berryhill ME, Jones KT. tDCS selectively improves working memory in older adults with more education. Neurosci Lett. 2012;521:148–151.
  • Stelzel C, Basten U, Montag C, et al. Frontostriatal involvement in task switching depends on genetic differences in d2 receptor density. J Neurosci. 2010;30(42):14205–14212.
  • Green AE, Munafò MR, DeYoung CG, et al. Using genetic data in cognitive neuroscience: from growing pains to genuine insights. Nat Rev Neurosci. 2008;9(9):710–720.
  • Teki S, Griffiths TD. Working memory for time intervals in auditory rhythmic sequences. Front Psychol. 2014;5:1329.
  • Zhou B, Pöppel E, Bao Y. In the jungle of time: the concept of identity as a way out. Front Psychol. 2014;5: 844.
  • Jozefowiez J, Polack CW, Machado A, et al. Trial frequency effects in human temporal bisection: implications for theories of timing. Behav Process. 2014;101:81–88.
  • Teixeira S, Machado S, Paes F, et al. Time perception distortion in neuropsychiatric and neurological disorders. CNS Neurol Disord – Drug Targets. 2013;12:567–582.
  • Wiener M, Lee YS, Lohoff FW, et al. Individual differences in the morphometry and activation of time perception networks are influenced by dopamine genotype. Neuroimage. 2014;89:10–22.
  • Buhusi CV, Meck WH. What makes us tick? Functional and neural mechanisms of interval timing. Nat Rev Neurosci. 2005;6(10):755–765.
  • Wittmann M, Leland DS, Churan J, et al. Impaired time perception and motor timing in stimulant-dependent subjects. Drug Alcohol Dependence. 2007;90(2–3):183–192.
  • Vicario CM, Martino D, Spata F, et al. Time processing in children with Tourette's syndrome. Brain Cogn. 2010;73:28–3410.
  • Gupta DS. Processing of sub- and supra-second intervals in the primate brain results from the calibration of neuronal oscillators via sensory, motor, and feedback processes. Front Psychol. 2014;5:816.
  • Markant J, Cicchetti D, Hetzel S, et al. Relating dopaminergic and cholinergic polymorphisms to spatial attention in infancy. Dev Psychol. 2014;50(2):360–369.
  • Fontes R, Ribeiro J, Gupta DS, et al. Time perception mechanisms at central nervous system. Neurol Int. 2016;8(1):5939.
  • Allman MJ, Meck WH. Pathophysiological distortions in time perception and timed performance. Pathophysiological distortions in time perception. Brain. 2012;135:656–677.
  • Buckley R. Slow time perception can be learned. Front Psychol. 2014;5:209.
  • Maksimov M, Vaht M, Murd C, et al. Brain dopaminergic system related genetic variability interacts with target/mask timing in metacontrast masking. Neuropsychologia. 2015;71:112–118.
  • Berry AS, Li X, Lin Z, et al. Shared and distinct factors driving attention and temporal processing across modalities. Acta Psychol (Amst). 2014;147:42–50.
  • Block RA, Grondin S. Timing and time perception: a selective review and commentary on recent reviews. Front Psychol. 2014;5:648.
  • Rammsayer TH. Effects of body core temperature and brain dopamine activity on timing processes in humans. Biol Psychol. 1997;46(2):169–192.
  • Matthews WJ, Meck WH. Time perception: the bad news and the good. Wiley Interdiscip Rev Cogn Sci. 2014;5(4):429–446.
  • Bender S, Rellum T, Freitag C, et al. Time-resolved influences of functional DAT1 and COMT variants on visual perception and post-processing. PLoS ONE. 2012;7(7):e41552.
  • Balci F, Gallistel CR, Allen BD, et al. Acquisition of peak responding: what is learned? Behav Process. 2009;80(1):67–75.
  • Carvalho OM, Silva AJ, Balleine BW. Evidence of selective learning deficits on tests of pavlovian and instrumental conditioning in alpha-CaMKIIT286A mutant mice. Int J Comp Psychol. 2001;14:161–174.
  • Meck WH, Cheng RK, MacDonald CJ, et al. Gene-dose dependent effects of methamphetamine on interval timing in dopamine-transporter knockout mice. Neuropharmacology. 2012;62(3):1221–1229.
  • Smith DR, Gallagher M, Stanton ME. Genetic background differences and nonassociative effects in mouse trace fear conditioning. Learn Mem. 2007;14(9):597–605.
  • Buhusi CV, Aziz D, Winslow D, et al. Interval timing accuracy and scalar timing in C57BL/6 mice. Behav Neurosci. 2009;123(5):1102–1113.
  • Colzato LS, van den Wildenberg WP, Van der Does AJ, et al. Genetic markers of striatal dopamine predict individual differences in dysfunctional, but not functional impulsivity. Neuroscience. 2010;170:782–788.
  • Bidwell LC, Willcutt EG, McQueen MB, et al. A family based association study of DRD4, DAT1, and 5HTT and continuous traits of attention-deficit hyperactivity disorder. Behav Genet. 2011;41:165–174.
  • Kondo HM, Kitagawa N, Kitamura MS, et al. Separability and commonality of auditory and visual bistable perception. Cereb Cortex. 2012;22(8):1915–1922.
  • Balci F, Wiener M, Cavdaroğlu B, et al. Epistasis effects of dopamine genes on interval timing and reward magnitude in humans. Neuropsychologia. 2013;51(2):293–308.
  • Muellner J, Gharrad I, Habert MO, et al. Dopaminergic denervation severity depends on COMT Val158Met polymorphism in Parkinson's disease. Parkinsonism Relat Disord. 2015;21(5):471–476.
  • Kanai R, Lloyd H, Bueti D, et al. Modality-independent role of the primary auditory cortex in time estimation. Exp Brain Res. 2011;209(3):465–471.
  • Liu L, Cheng J, Su Y, et al. Deficiency of sustained attention in ADHD and its potential genetic contributor MAOA. J Atten Disord. 2015;17. pii: 1087054715574832.
  • Wang LJ, Lee SY, Chen SL, et al. A potential interaction between COMT and MTHFR genetic variants in Han Chinese patients with bipolar II disorder. Sci Rep. 2015;5(6):8813.
  • Richter A, Richter S, Barman A, et al. Motivational salience and genetic variability of dopamine D2 receptor expression interact in the modulation of interference processing. Front Hum Neurosci. 2013;5(7):250.
  • Jönsson EG, Nöthen MM, Grünhage F, et al. Polymorphisms in the dopamine D2 receptor gene and their relationships to striatal dopamine receptor density of healthy volunteers. Mol Psychiatry. 2009;4(3):290–296.
  • Pan YQ, Qiao L, Xue XD, et al. Association between ANKK1 (rs1800497) polymorphism of DRD2 gene and attention deficit hyperactivity disorder: a meta-analysis. Neurosci Lett. 2015;590(17):101–105.
  • Bueti D, Lasaponara S, Cercignani M, et al. Learning about time: plastic changes and interindividual brain differences. Neuron. 2012;75(4):725–737.
  • Shih MC, Hoexter MQ, Andrade LA, et al. Parkinson's disease and dopamine transporter neuroimaging: a critical review. Sao Paulo Med J. 2006;124(3):168–175.
  • Faraone SV, Spencer TJ, Madras BK, et al. Functional effects of dopamine transporter gene genotypes on in vivo dopamine transporter functioning: a meta-analysis. Mol Psychiatry. 2014;19:880–889.
  • Habak C, Noreau A, Nagano-Saito A, et al. Dopamine transporter SLC6A3 genotype affects cortico-striatal activity of set-shifts in Parkinson's disease. Brain. 2014;137(11):3025–3035.
  • Maitra S, Sarkar K, Ghosh P, et al. Potential contribution of dopaminergic gene variants in ADHD core traits and co-morbidity: a study on eastern Indian probands. Cell Mol Neurobiol. 2014;34(4):549–564.
  • Fehér A, Juhász A, Pákáski M, et al. Association between the 9 repeat allele of the dopamine transporter 40 bp variable tandem repeat polymorphism and Alzheimer's disease. Psychiatry Res. 2014;220(1–2):730–731.
  • de Azeredo LA, Rovaris DL, Mota NR, et al. Further evidence for the association between a polymorphism in the promoter region of SLC6A3/DAT1 and ADHD: findings from a sample of adults. Eur Arch Psychiatry Clin Neurosci. 2014;264(5):401–408.
  • Greenwood TA, Badner JA, Byerley W, et al. Heritability and linkage analysis of personality in bipolar disorder. J Affect Disord. 2013;151(2):748–755.
  • Matell MS, Meck WH. Cortico-striatal circuits and interval timing: coincidence detection of oscillatory processes. Brain Res Cogn Brain Res. 2004;21(2):139–170.
  • Colzato LS, van den Wildenberg WP, Hommel B. Cognitive control and the COMT Val158Met polymorphism: genetic modulation of videogame training and transfer to task-switching efficiency. Psychol Res. 2014;78(5):670–678.
  • Buhusi CV, Meck WH. Differential effects of methamphetamine and haloperidol on the control of an internal clock. Behav Neurosci. 2002;116(2):291–297.
  • MacDonald CJ, Meck WH. Differential effects of clozapine and haloperidol on interval timing in the supraseconds range. Psychopharmacology (Berl). 2005;182(2):232–244.
  • Golombek DA, Bussi IL, Agostino PV. Minutes, days and years: molecular interactions among different scales of biological timing. Philos Trans R Soc Lond B Biol Sci. 2014;369(1637):20120465.
  • Meck WH, Penney TB, Pouthas V. Cortico-striatal representation of time in animals and humans. Curr Opin Neurobiol. 2008;18(2):145–152.
  • Cevik MO. Effects of methamphetamine on duration discrimination. Behav Neurosci. 2003;117(4):774–784.
  • Cheng RK, MacDonald CJ, Meck WH. Differential effects of cocaine and ketamine on time estimation: implications for neurobiological models of interval timing. Pharmacol Biochem Behav. 2006;85(1):114–122.
  • Lake JI, Meck WH. Differential effects of amphetamine and haloperidol on temporal reproduction: dopaminergic regulation of attention and clock speed. Neuropsychologia. 2013;51(2):284–292.
  • Drew MR, Fairhurst S, Malapani C, et al. Effects of dopamine antagonists on the timing of two intervals. Pharmacol Biochem Behav. 2003;75(1):9–15.
  • Thönes S, Oberfeld D. Time perception in depression: a meta-analysis. J Affect Disord. 2015;175:359–372.
  • Jahanshahi M, Wilkinson L, Gahir H, et al. Medication impairs probabilistic classification learning in Parkinson's disease. Neuropsychologia. 2010;48(4):1096–1103.
  • Meck WH. Neuropharmacology of timing and time perception. Brain Res Cogn Brain Res. 1996;3(3–4):227–242.
  • Cheng RK, Hakak OL, Meck WH. Habit formation and the loss of control of an internal clock: inverse relationship between the level of baseline training and the clock-speed enhancing effects of methamphetamine. Psychopharmacology (Berl). 2007;193(3):351–362.
  • Rascol O, Perez-Lloret S, Ferreira JJ. New treatments for levodopa-induced motor complications. Mov Disord. 2015;30(11):1451–1460.
  • Rakitin BC, Scarmeas N, Li T, et al. Single-dose levodopa administration and aging independently disrupt time production. J Cogn Neurosci. 2006;18(3):376–387.
  • Rubia K, Smith A. The neural correlates of cognitive time management: a review. Acta Neurobiol Exp. 2004;64:329–340.
  • Lewis PA, Miall RC. Remembering the time: a continuous clock. Trends Cogn Sci. 2006;10(9):401–406.
  • Paulus MP, Hozack NE, Zauscher BE, et al. Behavioral and functional neuroimaging evidence for prefrontal dysfunction in methamphetamine-dependent subjects. Neuropsychopharmacology. 2002;26:53–63.
  • Rao S, Mayer A, Harrington D. The evolution of brain activation during temporal processing. Nat Neurosci. 2001;4:317–323.
  • Coull JT, Vidal F, Nazarian B, et al. Functional anatomy of the attentional modulation of time estimation. Science. 2004;5:1506–1508.
  • Hinton S, Meck W. Frontal-striatal circuitry activated by human peak interval timing in the supra-seconds range. Brain Res Cogn Brain Res. 2004;21:171–182.
  • Perbal S, Deweer B, Pillon B, et al. Effects of internal clock and memory disorders on duration reproductions and duration productions in patients with Parkinson's disease. Brain Cogn. 2005;58(1):35–48.
  • Brown SW. Attentional resources in timing: interference effects in concurrent temporal and nontemporal working memory tasks. Percept Psychophys. 1997;59:1118–1140.
  • Watanabe M, Kodama T, Hikosaka K. Increase of extracellular dopamine in primate prefrontal cortex during a working memory task. J Neurophysiol. 1997;78:2795–2798.
  • Wager TD, Smith EE. Neuroimaging studies of working memory: a meta-analysis. Cogn Affect Behav Neurosci. 2003;3:255–274.
  • Pouthas V, Perbal S. Time perception does not only depend on accurate clock mechanisms but also on unimpaired attention and memory processes. Acta Neurobiol Exp. 2004;64:367–385.
  • Davalos DB, Kisley MA, Ross RG. Effects of interval duration on temporal processing in schizophrenia. Brain Cogn. 2003;52:295–301.
  • Koch G, Costa A, Brusa L, et al. Impaired reproduction of second but not millisecond time intervals in Parkinson's disease. Neuropsychologia. 2008;46:1305–1313.
  • Paulsen JS, Zimbelman JL, Hinton SC, et al. FMRI biomarker of early neuronal dysfunction in presymptomatic Huntington's disease. Am J Neuroradiol. 2004;25:1715–1721.
  • Toplak ME, Dockstader C, Tannock R. Temporal information processing in ADHD: findings to date and new methods. J Neurosci Methods. 2006;151:15–29.
  • Harrington DL, Haaland KY, Knight RT. Cortical networks underlying mechanisms of time perception. J Neurosci. 1998;18:1085–1095.
  • Ivry RB, Spencer RM. The neural representation of time. Curr Opin Neurobiol. 2004;14(2):225–232.
  • Krüger O, Shiozawa T, Kreifelts B, et al. Three distinct fiber pathways of the bed nucleus of the stria terminalis to the amygdala and prefrontal cortex. Cortex. 2015;66:60–68.
  • Wong AL, Haith AM, Krakauer JW. Motor planning. Neuroscientist. 2015;21(4):385–398.
  • Reuter M, Peters K, Schroeter K, et al. The influence of the dopaminergic system on cognitive functioning: a molecular genetic approach. Behav Brain Res. 2005;164(1):93–99.
  • Beste C, Stock AK, Epplen JT, et al. Dissociable electrophysiological subprocesses during response inhibition are differentially modulated by dopamine D1 and D2 receptors. Eur Neuropsychopharmacol. 2016;26(6):1029–1036.
  • Merchant H, Harrington DL, Meck WH. Neural basis of the perception and estimation of time. Annu Rev Neurosci. 2013;36:313–336.
  • Newman DP, Cummins TD, Tong JH, et al. Dopamine transporter genotype is associated with a lateralized resistance to distraction during attention selection. J Neurosci. 2014;34(47):15743–15750.
  • Lucas M, Chaves F, Teixeira S, et al. Time perception impairs sensory-motor integration in Parkinson's disease. Int Arch Med. 2013;6(1):39.
  • Finnerty GT, Shadlen MN, Jazayeri M, et al. Time in cortical circuits. J Neurosci. 2015;35(41):13912–13916.
  • Lee KH, Bhaker RS, Mysore A, et al. Time perception and its neuropsychological correlates in patients with schizophrenia and in healthy volunteers. Psychiatry Res. 2009;166:174–183.
  • Teixeira S, Machado S, Velasques B, et al. Integrative parietal cortex processes: neurological and psychiatric aspects. J Neurol Sci. 2014;338:12–22.
  • Gómez J, Marín-Méndez JJ, Molero P, et al. Time perception networks and cognition in schizophrenia: a review and a proposal. Psychiatry Res. 2014;220:737–744.
  • Elvevåg B, Brown GD, McCormack T, et al. Identification of tone duration, line length, and letter position: an experimental approach to timing and working memory deficits in schizophrenia. J Abnormal Psychol. 2004;113:509–521.
  • Monakhov M, Golimbet V, Abramova L, et al. Association study of three polymorphisms in the dopamine D2 receptor gene and schizophrenia in the Russian population. Schizophrenia Res. 2008;100:302–307.
  • Eisenberg DP, Berman KF. Executive function, neural circuitry, and genetic mechanisms in schizophrenia. Neuropsychopharmacol Rev. 2010;35:258–277.
  • Kunii Y, Miura I, Matsumoto J, et al. Elevated postmortem striatal t-DARPP expression in schizophrenia and associations with DRD2/ANKK1 polymorphism. Prog Neuro-Psychopharmacol Biol Psychiatry. 2014;53:123–128.
  • Ward RD, Kellendonk C, Kandel ER, et al. Timing as a window on cognition in schizophrenia. Neuropharmacology. 2012;62(3):1175–1181.
  • Cordeiro Q, Vallada H. Association study between the Taq1A (rs1800497) polymorphism and schizophrenia in a Brazilian sample. Arq Neuropsiquiatr. 2014;72(8):582–586.
  • Dickinson D, Harvey PD. Systemic hypotheses for generalized cognitive deficits in schizophrenia: a new take on old problem. Schizophrenia Bull. 2009;35:403–414.
  • Gatt JM, Burton KLO, Williams LM, et al. Specific and common genes implicated across major mental disorders: a review of meta-analysis studies. J Psychiatr Res. 2015;60:1–13.
  • Elvevag B, Goldberg TE. Cognitive impairment in schizophrenia is the core of the disorder. Crit Rev Neurobiol. 2000;14:1–21.
  • Landgraf S, Steingen J, Eppert Y, et al. Temporal information processing in short- and long-term memory of patients with schizophrenia. PLoS ONE. 2011;6(10):e26140.
  • Bonnot O, de Montalembert M, Kermarrec S, et al. Are impairments of time perception in schizophrenia a neglected phenomenon? J Physiol Paris. 2011;105:164–169.
  • Zalla T, Verlut I, Franck N, et al. Perception of dynamics action in patients with schizophrenia. Psychiatry Res. 2004;128:39–51.
  • Uhlhaas, PJ, Singer W. Abnormal neural oscillations and synchrony in schizophrenia. Nat Rev Neurosci. 2010;11:100–113.
  • Davalos DB, Rojas DC, Tregellas JR. Temporal processing in schizophrenia: effects of task-difficulty on behavioural discrimination and neuronal responses. Schizophrenia Res. 2011;127:123–130.
  • Ortuño F, Guillén-Grima F, López-Garcia P, et al. Functional neural networks of time perception: challenge and opportunity for schizophrenia research. Schizophrenia Res. 2011;125:129–135.
  • Penney TB, Meck WH, Roberts SA, et al. Interval timing deficits in individuals at high risk for schizophrenia. Brain Cogn. 2005;58:109–118.
  • Roy M, Grondin S, Roy MA. Time perception disorders are related to working memory impairments in schizophrenia. Psychiatry Res. 2012;200:159–166.
  • Bertolino A, Fazio L, Caforio G, et al. Functional variants of the dopamine receptor D2 gene modulate prefronto-striatal phenotypes in schizophrenia. Brain. 2009;132:417–425.
  • Yao J, Pan Y, Ding M, et al. Association between DRD2 (rs1799732 and rs1801028) and ANKK1 (rs1800497) polymorphisms and schizophrenia: a meta-analysis. Am J Med Genet Part B. 2015;68B:1–13.
  • Carroll CA, Boggs J, O'Donnell BF, et al. Temporal processing dysfunction in schizophrenia. Brain Cogn. 2008;70:181–190.
  • Papageorgiou C, Karanasiou IS, Kapsali F, et al. Temporal processing dysfunction in schizophrenia as measured by time interval discrimination and time reproduction tasks. Prog Neuro-Psychopharmacol Biol Psychiatry. 2013;40(10):173–179.
  • Elvevåg B, McCormack T, Gilbert A, et al. Duration judgments in patients with schizophrenia. Psychol Med. 2003;33:1249–1261.
  • Jones CRG, Malone TJ, Dirnberger G, et al. Basal ganglia, dopamine and temporal processing: performance on three timing tasks on and off medication in Parkinson's disease. Brain Cogn. 2008;68:30–41.
  • Torta DM, Castelli L, Latini-Corazzini L, et al. Dissociation between time reproduction of actions and of intervals in patients with Parkinson's disease. J Neurol. 2010;257:3377–3385.
  • Cai J, Tian Y, Lin R, et al. Protective effects of kidney-tonifying Chinese herbal preparation on substantia nigra neurons in a mouse model of Parkinson's disease. Neural Regen Res. 2012;7(6):413–420.
  • Collier JT, Kanaan MN, Kordower HJ. Ageing as a primary risk factor for Parkinson's disease: evidence from studies of non-human primates. Nat Rev Neurosci. 2011;12(6):359–366.
  • Stoessl AJ, Lehericy S, Strafella AP. Imaging insights into basal ganglia function, Parkinson's disease, and dystonia. Lancet. 2014;384(9942):532–544.
  • Zweig RM, Disbrow EA, Javalkar V. Cognitive and psychiatric disturbances in Parkinsonian syndromes. Neurol Clin. 2016;34:235–246.
  • Ransmayr G. Cognitive impairment in Parkinson´s disease. Psychiatr Danub. 2015;27(4):458–461.
  • Silva CF, Morgerob KCS, Motab AM, et al. Aging and Parkinson's disease as functional models of temporal order perception. Neuropsychologia. 2015;78:1–9.
  • Bermudez MA, Schultz W. Timing in reward and decision processes. Philos Trans R Soc Lond B Biol Sci. 2014;369(1637):20120468.
  • Wittmann M. Time perception and temporal processing levels of the brain. Chronobiol Int. 1999;16(1):17–32.
  • Mioni G, Mattalia G, Stablum F. Time perception in severe traumatic brain injury patients: a study comparing different methodologies. Brain Cogn. 2013;81(3):305–312.
  • Qasim SE, de Hemptinne C, Swann NC, et al. Electrocorticography reveals beta desynchronization in the basal ganglia-cortical loop during rest tremor in Parkinson's disease. Neurobiol Dis. 2015;86:177–186.
  • Sharp ME, Foerde K, Daw ND, et al. Dopamine selectively remediates ‘model-based’ reward learning: a computational approach. Brain. 2015;139(Pt 2):355–364.
  • Moustafa AA, Sherman SJ, Frank MJ. A dopaminergic basis for working memory, learning and attentional shifting in Parkinsonism. Neuropsychologia. 2008;46(13):3144–3156.
  • Luo SX, Huang EJ. Dopaminergic neurons and brain reward pathways: from neurogenesis to circuit assembly. Am J Pathol. 2016;186(3):478–488.
  • Zhang J, Tan LC. Revisiting the medical management of Parkinson's disease: levodopa versus dopamine agonist. Curr Neuropharmacol. 2015;14(4):356–363.
  • Parker KL, Ruggiero RN, Narayanan NS. Infusion of D1 dopamine receptor agonist into medial frontal cortex disrupts neural correlates of interval timing. Front Behav Neurosci. 2015;9:294.
  • Tomassini A, Ruge D, Galea JM, et al. The role of dopamine in temporal uncertainty. J Cogn Neurosci. 2016;28(1):96–110.
  • Gold MS, Blum K, Oscar-Berman M, et al. Low dopamine function in attention deficit/hyperactivity disorder: should genotyping signify early diagnosis in children? Postgrad Med. 2014;126(1):153–177.
  • Badgaiyan RD, Sinha S, Sajjad M, et al. Attenuated tonic and enhanced phasic release of dopamine in attention deficit hyperactivity disorder. PLoS ONE. 2015;10(9):e0137326.
  • Swanson JM, Kinsbourne M, Nigg J, et al. Etiologic subtypes of attention-deficit/hyperactivity disorder: brain imaging, molecular genetic and environmental factors and the dopamine hypothesis. Neuropsychol Rev. 2007;17(1):39–59.
  • Krzymowski T, Stefanczyk-Krzymowska S. New facts and the concept of physiological regulation of the dopaminergic system function and its disorders. J Physiol Pharmacol. 2015;66(3):331–341.
  • Genro J, Kieling C, Rohde L, et al. Attention-deficit/hyperactivity disorder and the dopaminergic hypotheses. Expert Rev Neurother. 2010;10(4):587–601.
  • Aragona BJ, Liu Y, Yu YJ, et al. Nucleus accumbens dopamine differentially media test the formation and maintenance of monogamous pair bonds. Nat Neurosci. 2006;9:133–139.
  • Saez I, Zhu L, Set E, et al. Dopamine modulates egalitarian behavior in humans. Curr Biol. 2015;25:912–919.
  • Guitart-Masip M, Duzel E, Dolan R, et al. Action versus valence in decision making. Trends Cogn Sci. 2014;18:194–202.
  • Brown FC, Roth RM, Katz LJ. Allocentric but not egocentric visual memory difficulties in adults with ADHD may represent cognitive inefficiency. Psychiatry Res. 2015;228:649–658.
  • Noreika V, Falter CM, Rubia K. Timing déficits in attention-deficit/hyperactivity disorder (ADHD): evidence from neurocognitive and neuroimaging studies. Neuropsychologia. 2013;51:235–266.
  • Hart H, Radua J, Mataix-Cols D, et al. Meta-analysis of fMRI studies of timing in attention-deficit hyperactivity disorder (ADHD). Neurosci Biobehav Rev. 2012;36:2248–2256.
  • Rubia K, Halari R, Christakou A, et al. Impulsiveness as a timing disturbance: neurocognitive abnormalities in attention-deficit hyperactivity disorder during temporal processes and normalization with methylphenidate. Philos Trans R Soc Lond B Biol Sci. 2009;364:1919–1931.
  • Durston S, van Belle J, Zeeuw P. Differentiating frontostriatal and fronto-cerebellar circuits in attention-deficit/hyperactivity disorder. Biol Psychiatry. 2011;69:1178–1184.
  • Chen YY, Liaw LJ, Liang JM, et al. Timing perception and motor coordination on rope jumping in children with attention deficit hyperactivity disorder. Phys Ther Sport. 2013;14:105–109.
  • Zimmer L. Positron emission tomography neuroimaging for a better understanding of the biology of ADHD. Neuropharmacology. 2009;57(7–8):601–607.
  • Hwang-Gu SL, Gau SSF. Interval timing deficits assessed by time reproduction dual tasks as cognitive endophenotypes for attention-deficit/hyperactivity disorder. PLoS ONE. 2012;10(5):e0127157.
  • Liston C, Cohen MM, Teslovich T, et al. Atypical prefrontal connectivity in attention-deficit/hyperactivity disorder: pathway to disease or pathological end point? Biol Psychiatry. 2011;69:1168–1177.
  • Liu Y, Zhang D, Ma J, et al. The attention modulation on timing: an event-related potential study. PLoS ONE. 2013;8(6):e66190.
  • Tong JHS, Cummins TDR, Johnson BP, et al. An association between a dopamine transporter gene (SLC6A3) Haplotype and ADHD symptom measures in nonclinical adults. Am J Med Genet Part B. 2015;168B:89–96.
  • Allman MJ, Teki S, Griffiths TD, et al. Properties of the internal clock: first-and second-order principles of subjective time. Ann Rev Psychol. 2014;65:743–771.
  • Bschor T, Ising M, Bauer M, et al. Time experience and time judgment in major depression, mania and healthy subjects. A controlled study of 93 subjects. Acta Psychiatr Scand. 2004;109:222–229.
  • Kornbrot DE, Msetfi RM, Grimwood MJ. Time perception and depressive realism: judgment type, psychophysical functions and bias. PLOS One. 2013;8:e71585.
  • Blewett AE. Abnormal subjective time experience in depression. Br J Psychiatry. 1992;161:195–200.
  • Lemke MR, Koethe NH, Schleidt M. Timing of movements in depressed patients and healthy controls. J Affect Disord. 1999;56:209–214.
  • Gil S, Droit-Volet S. Time perception, depression and sadness. Behav Process. 2009;80:169–176.
  • Msetfi RM, Murphy RA, Kornbrot DE. The effect of mild depression on time discrimination. Q J Exp Psychol. 2012;65(4):632–645.
  • Kuhs HW, Kammer HK, Tolle R. Time estimation and the experience of time in endogenous depression (melancholia): an experimental investigation. Psychopathology. 1991;24:7–11.
  • Hass J, Farkhooi F, Durstewitz D. Dopaminergic modulation of time perception. Front Comput Neurosci. 2010.
  • Mahlberg R, Kienast T, Bschor T, et al. Evaluation of time memory in acutely depressed patients, manic patients, and healthy controls using a time reproduction task. Eur Psychiatry. 2008;23(6):430–433.
  • Bangert AS, Reuter-Lorenz PA, Seidler RD. Dissecting the clock: understanding the mechanisms of timing across tasks and temporal intervals. Acta Psychol. 2011;136(1):20–34.
  • Sévigny MC, Everett J, Grondin S. Depression, attention, and time estimation. Brain Cogn. 2003;53:351–353.
  • Martin LA, Goldowitz D, Mittleman G. Repetitive behavior and increased activity in mice with Purkinje cell loss: a model for understanding the role of cerebellar pathology in autism. Eur J Neurosci. 2010;31(3):544–555.
  • Harris NS, Courchesne E, Townsend J, et al. Neuroanatomic contributions to slowed orienting of attention in children with autism. Brain Res Cogn Brain Res. 1999;8(1):61–71.
  • Yu H, Liu J, Yang A, et al. Lack of association between polymorphisms in dopa decarboxylase and dopamine receptor-1 genes with childhood autism in Chinese Han population. J Child Neurol. 2016;31(5):560–564.
  • Bissonette GB, Roesch MR. Development and function of the midbrain dopamine system: what we know and what we need to. Genes Brain Behav. 2016;15(1):62–73.
  • Lustig C, Meck WH. Modality differences in timing and temporal memory throughout the lifespan. Brain Cogn. 2011;77(2):298–303.
  • Allman MJ, DeLeon IG, Wearden JH. Psychophysical assessment of timing in individuals with autism. Am J Intellect Dev Disabil. 2011;116(2):165–178.
  • De Boer-Schellekens L, Eussen M, Vroomen J. Diminished sensitivity of audiovisual temporal order in autism spectrum disorder. Front Integr Neurosci. 2013;7:8. doi:10.3389/fnint.2013.00008
  • Stevenson RA, Siemann JK, Schneider BC, et al. Multisensory temporal integration in autism spectrum disorders. J Neurosci. 2014;34(3):691–697.
  • Szelag E, Kowalska J, Galkowski T, et al. Temporal processing deficits in high-functioning children with autism. Br J Psychol. 2004;5(3):269–282.
  • Bartley AF, Lucas EK, Brady LJ, et al. Interneuron transcriptional dysregulation causes frequency-dependent alterations in the balance of inhibition and excitation in hippocampus. J Neurosci. 2015;35(46):15276–15290.
  • Rosenblau G, Kliemann D, Lemme B, et al. The role of the amygdala in naturalistic mentalising in typical development and in autism spectrum disorder. Br J Psychiatry. 2016;208(6):556–564.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.