1,067
Views
63
CrossRef citations to date
0
Altmetric
Review Article

Neuropathological profile of the pentylenetetrazol (PTZ) kindling model

ORCID Icon & ORCID Icon
Pages 1086-1096 | Received 13 Aug 2017, Accepted 21 May 2018, Published online: 07 Jun 2018

References

  • Fisher RS, Acevedo C, Arzimanoglou A, et al. ILAE official report: a practical clinical definition of epilepsy. Epilepsia. 2014;55:475–482.
  • Mason CR, Cooper RM. A permanent change in convulsive threshold in normal and brain-damaged rats with repeated small doses of pentylenetetrazol. Epilepsia. 1972;13:663–674.
  • Kalinowsky LB. History of convulsive therapy. Ann N Y Acad Sci. 1986;462:1–4.
  • Ramzan IM, Levy G. Kinetics of drug action in disease states. XIV. Effect of infusion rate on pentylenetetrazol concentrations in serum, brain and cerebrospinal fluid of rats at onset of convulsions. J Pharmacol Exp Ther. 1985;234:624–628.
  • Zienowicz M, Wisłowska A, Lehner M, et al. The effect of fluoxetine in a model of chemically induced seizures—behavioral and immunocytochemical study. Neurosci Lett. 2005; 373(3):226–231.
  • Downs AW, Eddy NB. The effect of repeated doses of cocaine on the rat. J Pharmacol Exp Ther. 1932;46:199–200.
  • Vosu H, Wise RA. Cholinergic seizure kindling in the rat: comparison of caudate, amygdala and hippocampus. Behav Biol. 1975;13:491–495.
  • Goddard GV, McIntyre DC, Leech CK. A permanent change in brain function resulting from daily electrical stimulation. Exp Neurol. 1969;25:295–330.
  • Atack JR, Cook SM, Hutson PH, et al. Kindling induced by pentylenetetrazole in rats is not directly associated with changes in the expression of NMDA or benzodiazepine receptors. Pharmacol Biochem Behav. 2000;65:743–750.
  • Becker A, Grecksch G, Thiemann W, et al. Pentylenetetrazol-kindling modulates stimulated dopamine release in the nucleus accumbens of rats. Pharmacol Biochem Behav. 2000;66:425–428.
  • Yonekawa WD, Kupferberg HJ, Woodbury DM. Relationship between pentylenetetrazol-induced seizures and brain pentylenetetrazol levels in mice. J Pharmacol Exp Ther. 1980;214:589–593.
  • Dhir A. Pentylenetetrazol (PTZ) kindling model of epilepsy. Curr Protoc Neurosci. 2012;Chapter 9:Unit 9.37.
  • Davoudi M, Shojaei A, Palizvan MR, et al. Comparison between standard protocol and a novel window protocol for induction of pentylenetetrazol kindled seizures in the rat. Epilepsy Res. 2013;106(1–2):54–63.
  • Sierra-Paredes G, Soto-Otero R, Mendez-Alvarez E, et al. Experimental spike-and-wave discharges induced by pentylenetetrazol and tolerance to repeated injections: an electrophysiological and biochemical study. Epilepsy Res. 1989;4:139–146.
  • Racine RJ. Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol. 1972;32:281–294.
  • Fischer W, Kittner H. Influence of ethanol on the pentylenetetrazol-induced kindling in rats. J Neural Transm. 1998;105:1129–1142.
  • Snead OC. Pharmacological models of generalized absence seizures in rodents. J Neural Transm Suppl. 1992;35:7–19.
  • Diehl RG, Smialowski A, Gotwo T. Development and persistence of kindled seizures after repeated injections of pentylenetetrazol in rats and guinea pigs. Epilepsia. 1984;25(4):506–510.
  • Sang DY, Lee TH. Mossy fiber synaptic reorganization of dentate gyrus by pentylenetetrazol kindling rat. J Korean Neurol Assoc. 1995;13:239–248.
  • Meeren H, van Luijtelaar G, Lopes da Silva F, et al. Evolving concepts on the pathophysiology of absence seizures: the cortical focus theory. Arch Neurol. 2005;62:371–376.
  • André V, Pineau N, Motte JE, et al. Mapping of neuronal networks underlying generalized seizures induced by increasing doses of pentylenetetrazol in the immature and adult rat: a c-Fos immunohistochemical study. Eur J Neurosci. 1998;10:2094–2106.
  • Szyndler J, Maciejak P, Turzyńska D, et al. Mapping of c-Fos expression in the rat brain during the evolution of pentylenetetrazol-kindled seizures. Epilepsy Behav. 2009;16:216–224.
  • Löscher W, Hönack D, Fassbender CP, et al. The role of technical, biological and pharmacological factors in the laboratory evaluation of anticonvulsant drugs. III. Pentylenetetrazole seizure models. Epilepsy Res. 1991;8:171–189.
  • Shandra AA, Godlevsky LS. Pentylenetetrazol-induced kindling as a model of absence and convulsive forms of epilepsy. Kindling 6. Boston, MA: Springer; 2005. p. 49–59.
  • Erdoğan F, Küçük A, Gölgeli A. Assesment of the features of seizures and EEG in pentylenetetrazol-induced kindling. J Neurol Sci Turk. 2006;23:084–092.
  • Liu G, Wang K, Lv C, et al. Functional imaging and pathology in brain of interictal cats kindled by pentylenetetrazol. Neurol Asia. 2013;18:9–15.
  • Tian F-F, Zeng C, Guo T-H, et al. Mossy fiber sprouting, hippocampal damage and spontaneous recurrent seizures in pentylenetetrazole kindling rat model. Acta Neurol Belg. 2009;109:298–304.
  • Erdoğan F, Küçük A, Gölgeli A. The assessment of the features of seizures and EEG in pentylenetetrazol-induced kindling. J Neurol Sci. 2006;23(2):84–92.
  • Popova I, Malkov A, Ivanov AI, et al. Metabolic correction by pyruvate halts acquired epilepsy in multiple rodent models. Neurobiol Dis. 2017;106:244–254.
  • Ramanjaneyulu R, Ticku MK. Interactions of pentamethylenetetrazole and tetrazole analogues with the picrotoxinin site of the benzodiazepine-GABA receptor-ionophore complex. Eur J Pharmacol. 1984;98:337–345.
  • Squires RF, Saederup E, Crawley JN, et al. Convulsant potencies of tetrazoles are highly correlated with actions on GABA/benzodiazepine/picrotoxin receptor complexes in brain. Life Sci. 1984;35:1439–1444.
  • Rocha L, Ackermann RF, Engel J. Chronic and single administration of pentylenetetrazol modifies benzodiazepine receptor-binding: an autoradiographic study. Epilepsy Res. 1996;24:65–72.
  • McCrohan CR, Gillette R. Enhancement of CAMP dependent sodium current by the convulsant drug pentylenetetrazol. Brain Res. 1988;452:21–27.
  • Papp A, Feher O, Erdelyi L. The ionic mechanism of the pentylenetetrazol convulsions. Acta Biol Hungarica. 1987;38:349–362.
  • Macdonald RL, Barker JL. Pentylenetetrazol and penicillin are selective antagonists of GABA-mediated post-synaptic inhibition in cultured mammalian neurones. Nature. 1977;267:720–721.
  • Atack JR. Development of subtype-selective GABAA receptor compounds for the treatment of anxiety, sleep disorders and epilepsy. In: Monti JM, Pandi-Perumal SR, Mohler H, editors. GABA and sleep – molecular, functional and clinical aspects. Basel: Springer; 2010. p. 25–72.
  • Chang YF, Gao XM. L-lysine is a barbiturate-like anticonvulsant and modulator of the benzodiazepine receptor. Neurochem Res. 1995;20:931–937.
  • Gasior M, Carter RB, Goldberg SR, et al. Anticonvulsant and behavioral effects of neuroactive steroids alone and in conjunction with diazepam. J Pharmacol Exp Ther. 1997;282:543–553.
  • Lazarova-Bakarova M, Petkov VV, Genkova-Papasova M. Effect of diazepam and medazepam on pentylenetetrazol kindling in albino rats. Acta Physiol Pharmacol Bulg. 1990;16:37–41.
  • Rosenberg HC. Differential expression of benzodiazepine anticonvulsant cross-tolerance according to time following flurazepam or diazepam treatment. Pharmacol Biochem Behav. 1995;51:363–368.
  • Rundfeldt C, Wlaź P, Hönack D, et al. Anticonvulsant tolerance and withdrawal characteristics of benzodiazepine receptor ligands in different seizure models in mice. Comparison of diazepam, bretazenil and abecarnil. J Pharmacol Exp Ther. 1995;275:693–702.
  • Bazyan AS, Zhulin VV, Karpova MN, et al. Long-term reduction of benzodiazepine receptor density in the rat cerebellum by acute seizures and kindling and its recovery 6 months later by a pentylenetetrazole challenge. Brain Res. 2001;888:212–220.
  • Cremer CM, Palomero-Gallagher N, Bidmon H-J, et al. Pentylenetetrazole-induced seizures affect binding site densities for GABA, glutamate and adenosine receptors in the rat brain. Neuroscience. 2009;163:490–499.
  • Corda MG, Giorgi O, Longoni B, et al. Decrease in the function of the gamma-aminobutyric acid-coupled chloride channel produced by the repeated administration of pentylenetetrazol to rats. J Neurochem. 1990;55:1216–1221.
  • Rocha L, Briones M, Ackermann RF, et al. Pentylenetetrazol-induced kindling: early involvement of excitatory and inhibitory systems. Epilepsy Res. 1996;26:105–113.
  • Rebrov IG, Karpova MN, Andreev AA, et al. Cl(−) conduction of GABAA receptor complex of synaptic membranes in the cortex of rats at the middle stage of chronic cerebral epileptization (pharmacological kindling). Bull Exp Biol Med. 2007;144:667–669.
  • Ekonomou A, Smith AL, Angelatou F. Changes in AMPA receptor binding and subunit messenger RNA expression in hippocampus and cortex in the pentylenetetrazole-induced “kindling” model of epilepsy. Brain Res Mol Brain Res. 2001;95:27–35.
  • Ekonomou A, Angelatou F. Upregulation of NMDA receptors in hippocampus and cortex in the pentylenetetrazol-induced “kindling” model of epilepsy. Neurochem Res. 1999;24:1515–1522.
  • Luthman J, Humpel C. Pentylenetetrazol kindling decreases N-methyl-D-aspartate and kainate but increases gamma-aminobutyric acid-A receptor binding in discrete rat brain areas. Neurosci Lett. 1997;239:9–12.
  • Meldrum BS, Akbar MT, Chapman AG. Glutamate receptors and transporters in genetic and acquired models of epilepsy. Epilepsy Res. 1999;36:189–204.
  • Schroeder H, Becker A, Hoellt V. Sensitivity and density of glutamate receptor subtypes in the hippocampal formation are altered in pentylenetetrazole-kindled rats. Exp Brain Res. 1998;120:527–530.
  • Brines ML, Sundaresan S, Spencer DD, et al. Quantitative autoradiographic analysis of ionotropic glutamate receptor subtypes in human temporal lobe epilepsy: up-regulation in reorganized epileptogenic hippocampus. Eur J Neurosci. 1997;9:2035–2044.
  • Zilles K, Qü MS, Köhling R, et al. Ionotropic glutamate and GABA receptors in human epileptic neocortical tissue: quantitative in vitro receptor autoradiography. Neuroscience. 1999;94:1051–1061.
  • Schünzel G, Wolf G, Pomrenke U, et al. Pentylenetetrazol kindling and factors of glutamate transmitter metabolism in rat hippocampus. Neuroscience. 1992;49:365–371.
  • Bradford HF. Glutamate, GABA and epilepsy. Prog Neurobiol. 1995;47:477–511.
  • Yudkoff M, Daikhin Y, Nissim I, et al. Metabolism of brain amino acids following pentylenetetrazole treatment. Epilepsy Res. 2003;53:151–162.
  • Bascuñana P, Javela J, Delgado M, et al. [(18)F]FDG PET neuroimaging predicts pentylenetetrazole (PTZ) kindling outcome in rats. Mol Imaging Biol. 2016;18(5):733–740.
  • Chugani HT, editor. Neuroimaging in epilepsy. New York: Oxford University Press; 2010.
  • Chang S-J, Yu B-C. Mitochondrial matters of the brain: mitochondrial dysfunction and oxidative status in epilepsy. J Bioenerg Biomembr. 2010;42:457–459.
  • Devi PU, Manocha A, Vohora D. Seizures, antiepileptics, antioxidants and oxidative stress: an insight for researchers. Expert Opin Pharmacother. 2008;9(18):3169–3177.
  • Rauca C, Wiswedel I, Zerbe R, et al. The role of superoxide dismutase and alpha-tocopherol in the development of seizures and kindling induced by pentylenetetrazol - influence of the radical scavenger alpha-phenyl-N-tert-butyl nitrone. Brain Res. 2004;1009:203–212.
  • Patsoukis N, Zervoudakis G, Georgiou CD, et al. Effect of pentylenetetrazol-induced epileptic seizure on thiol redox state in the mouse cerebral cortex. Epilepsy Res. 2004;62:65–74.
  • Patsoukis N, Zervoudakis G, Georgiou CD, et al. Thiol redox state and lipid and protein oxidation in the mouse striatum after pentylenetetrazol-induced epileptic seizure. Epilepsia. 2005;46:1205–1211.
  • Patsoukis N, Zervoudakis G, Panagopoulos NT, et al. Thiol redox state (TRS) and oxidative stress in the mouse hippocampus after pentylenetetrazol-induced epileptic seizure. Neurosci Lett. 2004;357:83–86.
  • Hawkins M, Pravica M, Radulovacki M. Chronic administration of diazepam downregulates adenosine receptors in the rat brain. Pharmacol Biochem Behav. 1988;30:303–308.
  • Pazdernik TL, Cross RS, Giesler M, et al. Changes in local cerebral glucose utilization induced by convulsants. Neuroscience. 1985;14:823–835.
  • Scheel-Krüger J. Dopamine-GABA interactions: evidence that GABA transmits, modulates and mediates dopaminergic functions in the basal ganglia and the limbic system. Acta Neurol Scand Suppl. 1986;107:1–54.
  • Schneider Oliveira M, Flávia Furian A, Freire LF, et al. Ascorbate modulates pentylenetetrazol-induced convulsions biphasically. Neuroscience. 2004;128:721–728.
  • Emoto MC, Yamato M, Sato-Akaba H, et al. Brain redox imaging in the pentylenetetrazole (PTZ)-induced kindling model of epilepsy by using in vivo electron paramagnetic resonance and a nitroxide imaging probe. Neurosci Lett. 2015;608:40–44.
  • Itoh K, Watanabe M, Yoshikawa K, et al. Magnetic resonance and biochemical studies during pentylenetetrazole-kindling development: the relationship between nitric oxide, neuronal nitric oxide synthase and seizures. Neuroscience. 2004;129:757–766.
  • Fang F, Lei H. Increased hippocampal T2 in a rat model of pentylenetetrazol-induced kindling correlates with seizure scores. J Neurol Sci. 2010;292:16–23.
  • Bittencourt PRM. Cerebral and cerebral atrophy in patients with serve epilepsy. In: Oxley J, Janz D, Meinardi H, editors. Chronic toxicity of antiepileptic drugs. New York: Raven Press; 1983. p. 237–246.
  • Franke H, Kittner H. Morphological alterations of neurons and astrocytes and changes in emotional behavior in pentylenetetrazol-kindled rats. Pharmacol Biochem Behav. 2001;70:291–303.
  • Mortazavi F, Ericson M, Story D, et al. Spatial learning deficits and emotional impairments in pentylenetetrazole-kindled rats. Epilepsy Behav. 2005;7:629–638.
  • Pavlova T, Stepanichev M, Gulyaeva N. Pentylenetetrazole kindling induces neuronal cyclin B1 expression in rat hippocampus. Neurosci Lett. 2006;392:154–158.
  • Park J-H, Cho H, Kim H, et al. Repeated brief epileptic seizures by pentylenetetrazole cause neurodegeneration and promote neurogenesis in discrete brain regions of freely moving adult rats. Neuroscience. 2006;140:673–684.
  • Angelatou F, Pagonopoulou O, Kostopoulos G. Alterations of A1 adenosine' receptors in different mouse brain areas after pentylentetrazol-induced seizures, but not in the epileptic mutant mouse ‘tottering’. Brain Res. 1990;534(1–2):251–256.
  • Boison D, Chen J-F, Fredholm BB. Adenosine signaling and function in glial cells. Cell Death Differ. 2010; 17:1071–1082.
  • Fredholm BB, Chen J-F, Cunha RA, et al. Adenosine and brain function. Int Rev Neurobiol. 2005;63:191–270.
  • Ribeiro JA. What can adenosine neuromodulation do for neuroprotection? Curr Drug Targets CNS Neurol Disord. 2005;4:325–329.
  • Stone TW, Ceruti S, Abbracchio MP. Adenosine receptors and neurological disease: neuroprotection and neurodegeneration. Handb Exp Pharmacol. 2009;193:535–587.
  • Engel J Jr. Introduction to temporal lobe epilepsy. Epilepsy Res. 1996;26:141–150.
  • Mathern GW, Babb TL, Leite JP, et al. The pathogenic and progressive features of chronic human hippocampal epilepsy. Epilepsy Res. 1996;26:151–161.
  • Wieser HG, Yaşargil MG. Selective amygdalohippocampectomy as a surgical treatment of mesiobasal limbic epilepsy. Surg Neurol. 1982;17:445–457.
  • Muramatsu R, Ikegaya Y, Matsuki N, et al. Early-life status epilepticus induces ectopic granule cells in adult mice dentate gyrus. Exp Neurol. 2008;211:503–510.
  • Yin J, Ma Y, Yin Q, et al. Involvement of over-expressed BMP4 in pentylenetetrazol kindling-induced cell proliferation in the dentate gyrus of adult rats. Biochem Biophys Res Commun. 2007;355:54–60.
  • Jiang W, Wan Q, Zhang Z-J, et al. Dentate granule cell neurogenesis after seizures induced by pentylenetrazol in rats. Brain Res. 2003;977:141–148.
  • Yardimoglu M, Ilbay G, Kokturk S, et al. Light and electron microscopic examinations in the hippocampus of the rat brain following PTZ-induced epileptic seizures. J Appl Biol Sci. 2007;1:97–106.
  • Bidmon H-J, Görg B, Palomero-Gallagher N, et al. Glutamine synthetase becomes nitrated and its activity is reduced during repetitive seizure activity in the pentylentetrazole model of epilepsy. Epilepsia. 2008;49:1733–1748.
  • Kregel KC. Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J Appl Physiol. 2002;92:2177–2186.
  • Bidmon H-J, Görg B, Palomero-Gallagher N, et al. Heat shock protein-27 is upregulated in the temporal cortex of patients with epilepsy. Epilepsia. 2004;45:1549–1559.
  • Martinez-Hernandez A, Bell KP, Norenberg MD. Glutamine synthetase: glial localization in brain. Science. 1977;195:1356–1358.
  • Schousboe A, Waagepetersen HS. Glial modulation of GABAergic and glutamatergic neurotransmission. Curr Top Med Chem. 2006;6:929–934.
  • Golarai G, Cavazos JE, Sutula TP. Activation of the dentate gyrus by pentylenetetrazol evoked seizures induces mossy fiber synaptic reorganization. Brain Res. 1992;593:257–264.
  • Zhang Y-F, Li S-L, Xiong T-Q, et al. The rearrangement of filamentous actin in mossy fiber synapses in pentylenetetrazol-kindled C57BL/6 mice. Epilepsy Res. 2014;108:20–28.
  • Mortazavi F, Ericson M, Story D, et al. Spatial learning deficits and emotional impairments in pentylenetetrazole-kindled rats. Epilepsy Behav. 2005;7:629–638.
  • Chan SL, Mattson MP. Caspase and calpain substrates: roles in synaptic plasticity and cell death. J Neurosci Res. 1999;58:167–190.
  • Gilman CP, Mattson MP. Do apoptotic mechanisms regulate synaptic plasticity and growth-cone motility? Neuromolecular Med. 2002;2:197–214.
  • Lu C, Fu W, Salvesen GS, et al. Direct cleavage of AMPA receptor subunit GluR1 and suppression of AMPA currents by caspase-3: implications for synaptic plasticity and excitotoxic neuronal death. Neuromolecular Med. 2002;1:69–79.
  • Rami A, Jansen S, Giesser I, et al. Post-ischemic activation of caspase-3 in the rat hippocampus: evidence of an axonal and dendritic localisation. Neurochem Int. 2003;43:211–223.
  • Narkilahti S, Nissinen J, Pitkänen A. Administration of caspase 3 inhibitor during and after status epilepticus in rat: effect on neuronal damage and epileptogenesis. Neuropharmacology. 2003;44:1068–1088.
  • Pavlova TV, Iakovlev AA, Stepanichev MI, et al. [Pentylenetetrazole kindling induces caspase-3 activation in rat brain]. Zhurnal Vyss Nervn deiatelnosti Im I P Pavlov. 2003;53:110–112.
  • Vasil'ev DS, Tumanova NL, Lavrent'eva VV, et al. The ability of NMDA glutamate receptor blockers to prevent a pentylenetetrazole kindling in mice and morphological changes in the hippocampus. Ross Fiziol zhurnal Im IM Sechenova/Ross Akad Nauk. 2013;99:1023–1035.
  • Mathern GW, Adelson PD, Cahan LD, et al. Hippocampal neuron damage in human epilepsy: Meyer's hypothesis revisited. Prog Brain Res. 2002;135:237–251.
  • Buckmaster PS. Laboratory animal models of temporal lobe epilepsy. Comp Med. 2004;54(5):473–485.
  • Curia G, Longo D, Biagini G, et al. The pilocarpine model of temporal lobe epilepsy. J Neurosci Methods. 2008;172(2):143–157.
  • Lévesque M, Avoli M. The kainic acid model of temporal lobe epilepsy. Neurosci Biobehav Rev. 2013;37(10 Pt 2):2887–2899.
  • Engel J. Mesial temporal lobe epilepsy: what have we learned? Neuroscientist. 2001;7:340–352.
  • Tatum WO. Mesial temporal lobe epilepsy. J Clin Neurophysiol. 2012;29:356–365.
  • Buckmaster PS, Zhang GF, Yamawaki R. Axon sprouting in a model of temporal lobe epilepsy creates a predominantly excitatory feedback circuit. J Neurosci. 2002;22:6650–6658.
  • Chang BS, Lowenstein DH. Epilepsy. N Engl J Med. 2003;349:1257–1266.
  • French JA, Williamson PD, Thadani VM, et al. Characteristics of medial temporal lobe epilepsy: I. Results of history and physical examination. Ann Neurol. 1993;34(6):774–780.
  • Nadler JV. The recurrent mossy fiber pathway of the epileptic brain. Neurochem Res. 2003;28:1649–1658.
  • Uzüm G, Sarper Diler A, Bahçekapili N, et al. Erythropoietin prevents the increase in blood-brain barrier permeability during pentylentetrazol induced seizures. Life Sci. 2006;78:2571–2576.
  • Pont F, Collet A, Lallement G. Early and transient increase of rat hippocampal blood–brain barrier permeability to amino acids during kainic acid-induced seizures. Neurosci Lett. 1995;184:52–54.
  • Hansen SL, Sperling BB, Sánchez C. Anticonvulsant and antiepileptogenic effects of GABAA receptor ligands in pentylenetetrazole-kindled mice. Prog Neuropsychopharmacol Biol Psychiatry. 2004;28(1):105–113.
  • Ali A, Ahmad FJ, Pillai KK, et al. Amiloride protects against pentylenetetrazole-induced kindling in mice. Br J Pharmacol. 2005;145(7):880–884.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.