91
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Maternal separation induces long-term changes in mineralocorticoid receptor in rats subjected to chronic stress and treated with tianeptine

ORCID Icon, ORCID Icon & ORCID Icon
Pages 540-550 | Received 02 Nov 2017, Accepted 04 Nov 2018, Published online: 26 Dec 2018

References

  • De Kloet ER, Vreugdenhil E, Oitzl MS, et al. Brain corticosteroid receptor balance in health and disease. Endocr Rev. 1998;19:269–301.
  • Swaab DF, Bao AM, Lucassen PJ. The stress system in the human brain in depression and neurodegeneration. Ageing Res Rev. 2005;4:141–194.
  • Xiong H, Krugers HJ. Tuning hippocampal synapses by stress-hormones: relevance for emotional memory formation. Brain Res. 2015;1621:114–120.
  • Herman JP, Figueiredo H, Mueller NK, et al. Central mechanisms of stress integration: hierarchical circuitry controlling hypothalamo-pituitary-adrenocortical responsiveness. Front Neuroendocrinol. 2003;24:151–180.
  • de Kloet ER. Functional profile of the binary brain corticosteroid receptor system: mediating, multitasking, coordinating, integrating. Eur J Pharmacol. 2013;719:53–62.
  • Wong ML, Kling MA, Munson PJ, et al. Pronounced and sustained central hypernoradrenergic function in major depression with melancholic features: relation to hypercortisolism and corticotropin-releasing hormone. Proc Natl Acad Sci USA 2000;97:325–330.
  • Young EA, Abelson JL, Cameron OG. Effect of comorbid anxiety disorders on the hypothalamic-pituitary-adrenal axis response to a social stressor in major depression. Biol Psychiatry 2004;56:113–120.
  • McEwen BS, Gianaros PJ. Stress- and allostasis-induced brain plasticity. Annu Rev Med. 2011;62:431–445.
  • Von Werne Baes C, de Carvalho Tofoli SM, Martins CM, et al. Assessment of the hypothalamic-pituitary-adrenal axis activity: glucocorticoid receptor and mineralocorticoid receptor function in depression with early life stress – a systematic review. Acta Neuropsychiatr. 2012;24:4–15.
  • Kunugi H, Ida I, Owashi T, et al. Assessment of the dexamethasone/CRH test as a state-dependent marker for hypothalamic-pituitary-adrenal (HPA) axis abnormalities in major depressive episode: a multicenter study. Neuropsychopharmacology 2006;31:212–220.
  • Kunugi H, Urushibara T, Nanko S. Combined DEX/CRH test among Japanese patients with major depression. J Psychiatr Res. 2004;38:123–128.
  • Duval F, Mokrani MC, Correa H, et al. Lack of effect of HPA axis hyperactivity on hormonal responses to d-fenfluramine in major depressed patients: implications for pathogenesis of suicidal behaviour. Psychoneuroendocrinology 2001;26:521–537.
  • Galard R, Catalan R, Castellanos JM, et al. Plasma corticotropin-releasing factor in depressed patients before and after the dexamethasone suppression test. Biol Psychiatry 2002;51:463–468.
  • Pfennig A, Kunzel HE, Kern N, et al. Hypothalamus-pituitary-adrenal system regulation and suicidal behavior in depression. Biol Psychiatry 2005;57:336–342.
  • Reul JM, de Kloet ER. Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation. Endocrinology 1985;117:2505–2511.
  • Pietranera L, Brocca ME, Cymeryng C, et al. Increased expression of the mineralocorticoid receptor in the brain of spontaneously hypertensive rats. J Neuroendocrinol. 2012;24:1249–1258.
  • Arriza JL, Simerly RB, Swanson LW, et al. The neuronal mineralocorticoid receptor as a mediator of glucocorticoid response. Neuron 1988;1:887–900.
  • Spencer RL, Kim PJ, Kalman BA, et al. Evidence for mineralocorticoid receptor facilitation of glucocorticoid receptor-dependent regulation of hypothalamic-pituitary-adrenal axis activity. Endocrinology 1998;139:2718–2726.
  • de Kloet ER. From receptor balance to rational glucocorticoid therapy. Endocrinology 2014;155:2754–2769.
  • Oitzl MS, Champagne DL, van der Veen R, et al. Brain development under stress: hypotheses of glucocorticoid actions revisited. Neurosci Biobehav Rev. 2010;34:853–866.
  • Daskalakis NP, Bagot RC, Parker KJ, et al. The three-hit concept of vulnerability and resilience: toward understanding adaptation to early-life adversity outcome. Psychoneuroendocrinology 2013;38:1858–1873.
  • Juruena MF. Early-life stress and HPA axis trigger recurrent adulthood depression. Epilepsy Behav. 2014;38:148–159.
  • Anisman H, Zaharia MD, Meaney MJ, et al. Do early-life events permanently alter behavioral and hormonal responses to stressors? Int J Dev Neurosci. 1998;16:149–164.
  • Ladd CO, Thrivikraman KV, Huot RL, et al. Differential neuroendocrine responses to chronic variable stress in adult Long Evans rats exposed to handling-maternal separation as neonates. Psychoneuroendocrinology 2005;30:520–533.
  • Suárez MM, Molina S, Rivarola MA, et al. Effects of maternal deprivation on adrenal and behavioural responses in rats with anterodorsal thalami nuclei lesions. Life Sci. 2002;71:1125–1137.
  • Suárez MM, Rivarola MA, Molina SM, et al. Periodic maternal deprivation and lesion of anterodorsal thalami nuclei induce alteration on hypophyso adrenal system activity in adult rats. Life Sci. 2001;6;69:803–813.
  • Heuser I, Lammers CH. Stress and the brain. Neurobiol Aging 2003;24(Suppl 1): S69–S76; discussion S81–S82.
  • Kasper S, Olie JP. A meta-analysis of randomized controlled trials of tianeptine versus SSRI in the short-term treatment of depression. Eur Psychiatry 2002;17:331–340.
  • Lepine JP, Altamura C, Ansseau M, et al. Tianeptine and paroxetine in major depressive disorder, with a special focus on the anxious component in depression: an international, 6-week double-blind study dagger. Hum Psychopharmacol Clin Exp. 2001;16:219–227.
  • Novotny V, Faltus F. Tianeptine and fluoxetine in major depression: a 6-week randomised double-blind study. Hum Psychopharmacol Clin Exp. 2002;17:299–303.
  • Ridout F, Hindmarch I. Effects of tianeptine and mianserin on car driving skills. Psychopharmacology (Berl). 2001;154:356–361.
  • Atmaca M, Kuloglu M, Tezcan E, et al. Switching to tianeptine in patients with antidepressant-induced sexual dysfunction. Hum Psychopharmacol Clin Exp. 2003;18:277–280.
  • McEwen BS, Chattarji S, Diamond DM, et al. The neurobiological properties of tianeptine (Stablon): from monoamine hypothesis to glutamatergic modulation. Mol Psychiatry 2010;15:237–249.
  • Racagni G, Popoli M. The pharmacological properties of antidepressants. Int Clin Psychopharmacol. 2010;25:117–131.
  • Svenningsson P, Bateup H, Qi H, et al. Involvement of AMPA receptor phosphorylation in antidepressant actions with special reference to tianeptine. Eur J Neurosci. 2007;26:3509–3517.
  • Castanon N, Konsman JP, Medina C, et al. Chronic treatment with the antidepressant tianeptine attenuates lipopolysaccharide-induced Fos expression in the rat paraventricular nucleus and HPA axis activation. Psychoneuroendocrinology 2003;28:19–34.
  • Delbende C, Contesse V, Mocaer E, et al. The novel antidepressant, tianeptine, reduces stress-evoked stimulation of the hypothalamo-pituitary-adrenal axis. Eur J Pharmacol. 1991;202:391–396.
  • Kim SJ, Park SH, Choi SH, et al. Effects of repeated tianeptine treatment on CRF mRNA expression in non-stressed and chronic mild stress-exposed rats. Neuropharmacology 2006;50:824–833.
  • Czéh B, Michaelis T, Watanabe T, et al. Stress-induced changes in cerebral metabolites, hippocampal volume, and cell proliferation are prevented by antidepressant treatment with tianeptine. Proc Natl Acad Sci USA 2001;98:12796–12801.
  • Magariños AM, Deslandes A, McEwen BS. Effects of antidepressants and benzodiazepine treatments on the dendritic structure of CA3 pyramidal neurons after chronic stress. Eur J Pharmacol. 1999;371:113–122.
  • Trujillo V, Masseroni ML, Levin G, et al. Tianeptine influence on plasmatic catecholamine levels and anxiety index in rats under variable chronic stress after early maternal separation. Int J Neurosci. 2009;119:1210–1227.
  • Trujillo V, Durando PE, Suarez MM. Maternal separation in early life modifies anxious behavior and Fos and glucocorticoid receptor expression in limbic neurons after chronic stress in rats: effects of tianeptine. Stress 2015; 20:1–13.
  • NIH. Guide for the care and use of laboratory animals. National Academy Press Edititon. Washington (DC): National Institute of Health; 1996.
  • Ogawa T, Mikuni M, Kuroda Y, et al. Periodic maternal deprivation alters stress response in adult offspring: potentiates the negative feedback regulation of restraint stress-induced adrenocortical response and reduces the frequencies of open field-induced behaviors. Pharmacol Biochem Behav. 1994;49:961–967.
  • Suárez MM, Fiol de Cuneo M, Vincenti L, et al. Changes in corticosterone levels and sperm functional activity by chronic stress in rats. Arch Physiol Biochem. 1996;104:351–356.
  • Paxinos G, Watson C. The rat brain in stereotaxic coordinates. 6th ed. San Diego (CA): Elsevier Academic Pess; 2007.
  • Gomez-Sanchez CE, de Rodriguez AF, Romero DG, et al. Development of a panel of monoclonal antibodies against the mineralocorticoid receptor. Endocrinology 2006;147:1343–1348.
  • Caudal D, Jay TM, Godsil BP. Behavioral stress induces regionally-distinct shifts of brain mineralocorticoid and glucocorticoid receptor levels. Front Behav Neurosci. 2014;8:19.
  • Cotella EM, Durando PE, Suárez MM. A double-hit model of stress dysregulation in rats: implications for limbic corticosteroid receptors and anxious behavior under amitriptyline treatment. Stress 2014;17:235–246.
  • Kanatsou S, Fearey BC, Kuil LE, et al. Overexpression of mineralocorticoid receptors partially prevents chronic stress-induced reductions in hippocampal memory and structural plasticity. PLoS One 2015;10:e0142012.
  • Le Menuet D, Lombes M. The neuronal mineralocorticoid receptor: from cell survival to neurogenesis. Steroids 2014; 91:11–19.
  • Lucassen PJ, Fuchs E, Czéh B. Antidepressant treatment with tianeptine reduces apoptosis in the hippocampal dentate gyrus and temporal cortex. Biol Psychiatry 2004;55:789–796.
  • Mutlu O, Gumuslu E, Ulak G, et al. Effects of fluoxetine, tianeptine and olanzapine on unpredictable chronic mild stress-induced depression-like behavior in mice. Life Sci. 2012;91:1252–1262.
  • Pittenger C, Duman RS. Stress, depression, and neuroplasticity: a convergence of mechanisms. Neuropsychopharmacology 2008;33:88–109.
  • Della FP, Abelaira HM, Reus GZ, et al. Tianeptine exerts neuroprotective effects in the brain tissue of rats exposed to the chronic stress model. Pharmacol Biochem Behav. 2012;103:395–402.
  • Della FP, Abelaira HM, Reus GZ, et al. Treatment with tianeptine induces antidepressive-like effects and alters the neurotrophin levels, mitochondrial respiratory chain and cycle Krebs enzymes in the brain of maternally deprived adult rats. Metab Brain Dis. 2013;28:93–105.
  • Suárez MM, Paglini P, Fernández R, et al. Influence of anterodorsal thalamic nuclei on the hypophyseal-adrenal axis and cardiac beta receptors in rats submitted to variable chronic stress. Acta Physiol Pharmacol Ther Latinoam. 1999;49:71–78.
  • Cotella EM, Mestres Lascano I, Franchioni L, et al. Long-term effects of maternal separation on chronic stress response suppressed by amitriptyline treatment. Stress 2013;16:477–481.
  • McEwen BS, Wingfield JC. The concept of allostasis in biology and biomedicine. Horm Behav. 2003;43:2–15.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.