124
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Vitamin D3 favorable outcome on recognition memory and prefrontal cortex expression of choline acetyltransferase and acetylcholinesterase in experimental model of chronic high-fat feeding

&
Pages 262-269 | Received 08 Sep 2018, Accepted 01 Jun 2019, Published online: 10 Oct 2019

References

  • Val-Laillet D, Layec S, Guérin S, et al. Changes in brain activity after a diet-induced obesity. Obesity. 2011;19(4):749–756.
  • Miller AA, Spencer SJ. Obesity and neuroinflammation: a pathway to cognitive impairment. Brain Behav Immun. 2014;42:10–21.
  • Camer D, Yu Y, Szabo A, et al. Bardoxolone methyl prevents high-fat diet-induced alterations in prefrontal cortex signaling molecules involved in recognition memory. Prog Neuro-Psychopharmacol Biol Psychiatry. 2015;59:68–75.
  • Di Somma C, Scarano E, Barrea L, et al. Vitamin D and neurological diseases: an endocrine view. Int J Mol Sci. 2017;18(11):2482.
  • Suzuki M, Yoshioka M, Hashimoto M, et al. Randomized, double-blind, placebo-controlled trial of vitamin D supplementation in Parkinson disease. Am J Clin Nutr. 2013;97(5):1004–1013.
  • Feart C, Helmer C, Merle B, et al. Associations of lower vitamin D concentrations with cognitive decline and long-term risk of dementia and Alzheimer's disease in older adults. Alzheimers Dement. 2017;13(11):1207–1216.
  • Pierrot-Deseilligny C, Souberbielle JC. Vitamin D and multiple sclerosis: an update. Mult Scler Relat Disord. 2017;14:35–45.
  • Annweiler C. Vitamin D in dementia prevention. Ann N Y Acad Sci. 2016;1367(1):57–63.
  • Miller JW, Harvey DJ, Beckett LA, et al. Vitamin D status and rates of cognitive decline in a multiethnic cohort of older adults. JAMA Neurol. 2015;72(11):1295–1303.
  • Afzal S, Bojesen SE, Nordestgaard B. Reduced 25-hydroxyvitamin D and risk of Alzheimer’s disease and vascular dementia. Alzheimers Dement. 2014;10(3):296–302.
  • Annweiler C, Rolland Y, Schott AM, et al. Higher vitamin D dietary intake is associated with lower risk of Alzheimer’s disease: a 7-year follow-up. J Gerontol A Biol Sci Med Sci. 2012;67(11):1205–1211.
  • Keeney JT, Butterfield DA. Vitamin D deficiency and Alzheimer disease: common links. Neurobiol. Dis. 2015;84:84–98.
  • Reis HJ, Guatimosim C, Paquet M, et al. Neuro-transmitters in the central nervous system and their implication in learning and memory processes. Curr Med Chem. 2009;16(7):796–840.
  • Levey AI. Muscarinic acetylcholine receptor expression in memory circuits: implications for treatment of Alzheimer disease. Proc Natl Acad Sci USA. 1996;93(24):13541–13546.
  • Las Heras V, Clooney AG, Ryan FJ, et al. Short-term consumption of a high fat diet increases host susceptibility to Listeria monocytogenes infection. Microbiome. 2019;7(1):621.
  • Alrefaie Z, Alhayani A. Vitamin D3 improves decline in cognitive function and cholinergic transmission in prefrontal cortex of streptozotocin-induced diabetic rats. Behv Brain Res. 2015;278:156–162.
  • Aggleton JP. One-trial object recognition by rats. Q J Exp Psychol. 1985;37(4b):279–294.
  • Ennaceur A, Delacour J. A new one-trial test for neurobiological studies of memory in rats, 1: behavioral data. Behav Brain Res. 1988;31(1):47–59.
  • Bertaina-Anglade V, Enjuanes E, Morillon D, et al. The object recognition task in rats and mice: a simple and rapid model in safety pharmacology to detect amnesic properties of a new chemical entity. J Pharmacol Toxicol Methods. 2006;54(2):99–105.
  • Grayson B, Idris NF, Neill JC. Atypical antipsychotics attenuate a sub-chronic PCP-induced cognitive deficit in the novel object recognition task in the rat. Behav Brain Res. 2007;184(1):31–38.
  • Elmorsy SA, Soliman GF, Rashed LA, et al. Dexmedetomidine and propofol sedation requirements in an autistic rat model. Korean J Anesthesiol. 2019;72(2):169–177.
  • Tulving E. Episodic memory and common sense: how far apart. Philos Trans R Soc Lond B Biol Sci. 2001;356(1413):1505–1515.
  • Kirisattayakul W, Wattanathorn J, Iamsaard S, et al. Neuroprotective and memory-enhancing effect of the combined extract of purple waxy corn cob and pandan in ovariectomized rats. Oxid Med Cell Longev. 2017;2017:5187102. DOI:10.1155/2017/5187102.
  • Eduviere AT, Umukoro S, Adeoluwa OA, et al. Possible mechanisms involved in attenuation of lipopolysaccharide-induced memory deficits by methyl jasmonate in mice. Neurochem Res. 2016;41(12):3239–3249.
  • Butcher L, Woolf N. The rat nervous system. In: Paxinos G, editor. Cholinergic neurons and networks revisited. San Diego (CA): Academic Press; 2004. p. 1257–1268.
  • Mechawar N, Cozzari C, Descarries L. Cholinergic innervation in adult rat cerebral cortex: a quantitative immunocytochemical description. J Comp Neurol. 2000;428(2):305–318.
  • Howe WM, Berry AS, Francois J, et al. Prefrontal cholinergic mechanisms instigating shifts from monitoring for cues to cue-guided performance: converging electrochemical and fMRI evidence from rats and humans. J Neurosci. 2013;33(20):8742–8752.
  • Wallace TL, Bertrand D. Importance of the nicotinic acetylcholine receptor system in the prefrontal cortex. Biochem Pharmacol. 2013;85(12):1713–1720.
  • Tulving E, Kapur S, Craik FIM, et al. Hemispheric encoding/retrieval asymmetry in episodic memory: positron emission tomography findings. Proc Natl Acad Sci. 1994;91(6):2016–2020.
  • Weinstock M. The pharmacotherapy of Alzheimer's disease based on the cholinergic hypothesis: an update. Neurodegeneration. 1995;4(4):349–356.
  • Dutheil S, Ota KT, Wohleb ES, et al. High fat diet induced anxiety and anhedonia: impact on brain homeostasis and inflammation. Neuropsychopharmacol.. 2016;41(7):1874–1887.
  • Davidson TL, Hargrave SL, Swithers SE, et al. Inter-relationships among diet, obesity and hippocampal-dependent cognitive function. Neuroscience. 2013;253:110–122.
  • Kosari S, Badoer E, Nguyen JCD, et al. Effect of Western and high fat diets on memory and cholinergic measures in the rat. Behav Brain Res. 2012;235(1):98–103.
  • Yin Y, Fan Y, Lin F, et al. Nutrient biomarkers and vascular risk factors in stages of mild cognitive impairment: a cross‐sectional study. J Nutr Health Aging. 2015;19(1):39–47.
  • Littlejohns TJ, Henley WE, Lang IA, et al. Vitamin D and the risk of dementia and Alzheimer disease. Neurology. 2014;83(10):920–928.
  • Brouwer‐Brolsma EM, van der Zwaluw NL, et al. Higher serum 25‐hydroxyvitamin D and lower plasma glucose are associated with larger gray matter volume but not with white matter or total brain volume in Dutch Community‐dwelling older adults. J Nutr. 2015;145:1817–1823.
  • Fernandes de Abreu DA, Eyles D, Féron F. Vitamin D, a neuro-immunomodulator: implications for neurodegenerative and autoimmune diseases. Psychoneuroendocrinology. 2009;34(1):S265–S277.
  • Briones TL, Darwish H. Vitamin D mitigates age-related cognitive decline through the modulation of pro-inflammatory state and decrease in amyloid burden. J Neuroinflammation. 2012;9(1):244–257.
  • Mizwicki MT, Menegaz D, Zhang J, et al. Genomic and nongenomic signaling induced by 1α,25(OH)2-vitamin D3 promotes the recovery of amyloid-β phagocytosis by Alzheimer's disease macrophages. J Alzheimers Dis. 2012;29(1):51–62.
  • Buell JS, Dawson-Hughes B, Scott TM, et al. 25-Hydroxyvitamin D, dementia, and cerebrovascular pathology in elders receiving home services. Neurology. 2010;74(1):18–26.
  • Yamini P, Ray RS, Chopra K. Vitamin D3 attenuates cognitive deficits and neuroinflammatory responses in ICV-STZ induced sporadic Alzheimer's disease. Inflammopharmacol. 2018;26(1):39–55.
  • Francis PT, Ramírez MJ, Lai MK. Neurochemical basis for symptomatic treatment of Alzheimer's disease. Neuropharmacology. 2010;59(4/5):221–229.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.