306
Views
2
CrossRef citations to date
0
Altmetric
Reviews

The molecular basis of platelet biogenesis, activation, aggregation and implications in neurological disorders

, , &
Pages 1237-1249 | Received 10 Apr 2019, Accepted 14 Jan 2020, Published online: 26 Feb 2020

References

  • Ferrer-Acosta Y, González M, Fernández M, et al. Emerging roles for platelets in inflammation and disease. J Infect Disease Ther. 2014;2(4):149.
  • Morita Y, Iseki A, Okamura S, et al. Functional characterization of hematopoietic stem cells in the spleen. Exp Hematol. 2011;39(3):351–359.
  • Thon JN, Italiano JE. Platelet formation. Semin Hematol. 2010;47(3):220–226.
  • Senis Y, García Á. Platelet proteomics: state of the art and future perspective. In: Jonathan MG, Martyn PM-Smith, editors. Platelets and megakaryocytes. New York (NY): Springer; 2012. p. 367–399.
  • Bartley TD, Bogenberger J, Hunt P, et al. Identification and cloning of a megakaryocyte growth and development factor that is a ligand for the cytokine receptor MpI. Cell. 1994;77(7):1117–1124.
  • Hitchcock IS, Kaushansky K. Thrombopoietin from beginning to end. Br J Haematol. 2014;165(2):259–268.
  • Kim AR, Sankaran VG. Thrombopoietin: tickling the HSC’s fancy. EMBO Mol Med. 2018;10(1):10–12.
  • Choi ES, Nichol JL, Hokom MM, et al. Platelets generated in vitro from proplatelet-displaying human megakaryocytes are functional. Blood. 1995;85(2):402–413.
  • Ito T, Ishida Y, Kashiwagi R, et al. Recombinant human c‐Mpl ligand is not a direct stimulator of proplatelet formation in mature human megakaryocytes. Br J Haematol. 1996;94(2):387–390.
  • Schulze H, Stegner D. Imaging platelet biogenesis in vivo. Res Pract Thromb Haemost. 2018;2(3):461–468.
  • Feese MD, Tamada T, Kato Y, et al. Structure of the receptor-binding domain of human thrombopoietin determined by complexation with a neutralizing antibody fragment. Proc Natl Acad Sci USA. 2004;101(7):1816–1821.
  • Ihle JN. Cytokine receptor signalling. Nature. 1995;377(6550):591–594.
  • Amigo JD, Ackermann GE, Cope JJ, et al. The role and regulation of friend of GATA-1 (FOG-1) during blood development in the zebrafish. Blood. 2009;114(21):4654–4663.
  • Tijssen MR, Cvejic A, Joshi A, et al. Genome-wide analysis of simultaneous GATA1/2, RUNX1, FLI1, and SCL binding in megakaryocytes identifies hematopoietic regulators. Dev Cell. 2011;20(5):597–609.
  • Kaushansky K. The molecular mechanisms that control thrombopoiesis. J Clin Investig. 2005;115(12):3339–3347.
  • Yang J, Ma J, Xiong Y, et al. Epigenetic regulation of megakaryocytic and erythroid differentiation by PHF2 histone demethylase. J Cell Physiol. 2018;233(9):6841–6852.
  • Takahashi S, Komeno T, Suwabe N, et al. Role of GATA-1 in proliferation and differentiation of definitive erythroid and megakaryocytic cells in vivo. Blood. 1998;92(2):434–442.
  • Freson K, Wijgaerts A, Van Geet C. GATA1 gene variants associated with thrombocytopenia and anemia. Platelets. 2017;28(7):731–734.
  • Yu C, Niakan KK, Matsushita M, et al. X-linked thrombocytopenia with thalassemia from a mutation in the amino finger of GATA-1 affecting DNA binding rather than FOG-1 interaction. Blood. 2002;100(6):2040–2045.
  • Ciovacco WA, Raskind WH, Kacena MA. Human phenotypes associated with GATA-1 mutations. Gene. 2008;427(1–2):1–6.
  • Kim YW, Yun WJ, Kim A. Erythroid activator NF-E2, TAL1 and KLF1 play roles in forming the LCR HSs in the human adult β-globin locus. Int J Biochem Cell Biol. 2016;75:45–52.
  • Shivdasani RA, Rosenblatt MF, Zucker-Franklin D, et al. Transcription factor NF-E2 is required for platelet formation independent of the actions of thrombopoeitin/MGDF in megakaryocyte development. Cell. 1995;81(5):695–704.
  • Gasiorek JJ, Blank V. Regulation and function of the NFE2 transcription factor in hematopoietic and non-hematopoietic cells. Cell Mol Life Sci. 2015;72(12):2323–2335.
  • Rost MS, Shestopalov I, Liu Y, et al. Nfe2 is dispensable for early but required for adult thrombocyte formation and function in zebrafish. Blood Adv. 2018;2(23):3418–3427.
  • Lecine P, Villeval JL, Vyas P, et al. Mice lacking transcription factor NF-E2 provide in vivo validation of the proplatelet model of thrombocytopoiesis and show a platelet production defect that is intrinsic to megakaryocytes. Blood. 1998;92(5):1608–1616.
  • Lecine P, Blank V, Shivdasani R. Characterization of the hematopoietic transcription factor NF-E2 in primary murine megakaryocytes. J Biol Chem. 1998;273(13):7572–7578.
  • Levin J, Peng JP, Baker GR, et al. Pathophysiology of thrombocytopenia and anemia in mice lacking transcription factor NF-E2. Blood. 1999;94(9):3037–3047.
  • Lecine P, Italiano JE, Kim SW, et al. Hematopoietic-specific β1 tubulin participates in a pathway of platelet biogenesis dependent on the transcription factor NF-E2. Blood. 2000;96(4):1366–1373.
  • Tiwari S, Italiano JE, Barral DC, et al. A role for Rab27b in NF-E2-dependent pathways of platelet formation. Blood. 2003;102(12):3970–3979.
  • Nishimura S, Nagasaki M, Kunishima S, et al. IL-1α induces thrombopoiesis through megakaryocyte rupture in response to acute platelet needs. J Cell Biol. 2015;209(3):453–466.
  • Machlus KR, Johnson KE, Kulenthirarajan R, et al. CCL5 derived from platelets increases megakaryocyte proplatelet formation. Blood. 2016;127(7):921–926.
  • tot Pannerden HV, de Haas F, Geerts W, et al. The platelet interior revisited: electron tomography reveals tubular α-granule subtypes. Blood. 2010;116(7):1147–1156.
  • Falet H. Anatomy of the platelet cytoskeleton In Paolo G, Neal SK, Jose AL, Clive PP, editors. Platelets in thrombotic and non-thrombotic disorders. Cham: Springer; 2017. p. 139–156.
  • Venkatesh V, Kumar R, Varma DK, et al. Changes in platelet morphology indices in relation to duration of disease and glycemic control in children with type 1 diabetes mellitus. J Diabetes Complicat. 2018;32(9):833–838.
  • Rajagopal RL, Arunachalam S, Abdullah SM, et al. Can mean platelet volume and platelet distribution width be used as predictive markers for impending diabetic vascular complications? J Clin Diagn Res. 2018;12(2):EC01–EC05.
  • Beck F, Geiger J, Gambaryan S, et al. Temporal quantitative phosphoproteomics of ADP stimulation reveals novel central nodes in platelet activation and inhibition. Blood. 2017;129(2):e1–2.
  • Pertseva N, Daria C, Igor T. Morphological changes of platelets as a marker of early progression of diabetic nephropathy. Diabetes. 2018;67(Suppl. 1). DOI:10.2337/db18-2194-PUB
  • Sorrentino S, Studt JD, Horev MB, et al. Toward correlating structure and mechanics of platelets. Cell Adhesion Migr. 2016;10(5):568–575.
  • Moskalensky AE, Yurkin MA, Muliukov AR, et al. Method for the simulation of blood platelet shape and its evolution during activation. PLoS Comput Biol. 2018;14(3):e1005899.
  • Posch S, Neundlinger I, Leitner M, et al. Activation induced morphological changes and integrin αIIbβ3 activity of living platelets. Methods. 2013;60(2):179–185.
  • Bloom AL. Physiology of blood coagulation. Pathophysiol Haemos Thromb. 1990;20(1):14–29.
  • John A, Gorzelanny C, Bauer AT, et al. Role of the coagulation system in genitourinary cancers. Clin Genitourin Cancer. 2018;16(1):e29–37.
  • Wong T. Dynamics of platelet shape change and aggregation in size-dependent platelet subpopulations [MSc thesis]. McGill University; 1988.
  • Chandrashekar A, Singh G, Garry J, et al. Mechanical and biochemical role of fibrin within a venous thrombus. Eur J Vasc Endovasc Surg. 2018;55(3):417–424.
  • Hosseinzadegan H, Tafti DK. Mechanisms of platelet activation, adhesion, and aggregation. Thromb Haemost Res. 2017;1(2):1–6.
  • Estevez B, Du X. New concepts and mechanisms of platelet activation signaling. Physiology. 2017;32(2):162–177.
  • Qiao J, Arthur JF, Gardiner EE, et al. Regulation of platelet activation and thrombus formation by reactive oxygen species. Redox Biol. 2018;14:126–130.
  • Roberts DE, McNicol A, Bose R. Mechanism of collagen activation in human platelets. J Biol Chem. 2004;279(19):19421–19430.
  • Brass LF, Newman DK, Wannemacher KM, et al. Signal transduction during platelet plug formation. Platelets. 2013;2:319–346.
  • Nesbitt WS, Giuliano S, Kulkarni S, et al. Intercellular calcium communication regulates platelet aggregation and thrombus growth. J Cell Biol. 2003;160(7):1151–1161.
  • Durrant TN, van den Bosch MT, Hers I. Integrin αIIbβ3 outside-in signaling. Blood. 2017;130(14):1607–1619.
  • Seifert J, Rheinlaender J, Lang F, et al. Thrombin-induced cytoskeleton dynamics in spread human platelets observed with fast scanning ion conductance microscopy. Sci Rep. 2017;7(1):4810.
  • Bennett JS. Platelet‐fibrinogen interactions. Ann N Y Acad Sci. 2006;936(1):340–354.
  • Murugappa S, Kunapuli SP. The role of ADP receptors in platelet function. Front Biosci. 2006;11:1977–1986.
  • Jin J, Quinton TM, Zhang J, et al. Adenosine diphosphate (ADP)-induced thromboxane A2generation in human platelets requires coordinated signaling through integrin αIIbβ3 and ADP receptors. Blood. 2002;99(1):193–198.
  • Kulkarni S, Dopheide SM, Yap CL, et al. A revised model of platelet aggregation. J Clin Investig. 2000;105(6):783–791.
  • Furie B, Furie BC. Thrombus formation in vivo. J Clin Investig. 2005;115(12):3355–3362.
  • Clemetson KJ. Platelets and primary haemostasis. Thromb Res. 2012;129(3):220–224.
  • Heemskerk JW, Bevers EM, Lindhout T. Platelet activation and blood coagulation. Thromb Haemost. 2002;88(08):186–193.
  • Panteleev MA, Dashkevich NM, Ataullakhanov FI. Hemostasis and thrombosis beyond biochemistry: roles of geometry, flow and diffusion. Thromb Res. 2015;136(4):699–711.
  • Paul BZ, Jin J, Kunapuli SP. Molecular mechanism of thromboxane A2-induced platelet aggregation: essential role for P2TAC and α2A receptors. J Biol Chem. 1999;274(41):29108–29114.
  • Perry V. Thromboxane A2 and TP receptors: a trail of research, well traveled. J S C Acad Sci. 2016;14(1):3.
  • Palta S, Saroa R, Palta A. Overview of the coagulation system. Indian J Anaesth. 2014;58(5):515.
  • Kattula S, Byrnes JR, Wolberg AS. Fibrinogen and fibrin in hemostasis and thrombosis. Arterioscler Thromb Vasc Biol. 2017;37(3):e13–21.
  • Anthony M, Hinterberger H, Lance JW. Studies of serotonin metabolism in migraine. Proc Aust Assoc Neurol. 1968;5(1):109–112.
  • Boullin DJ, Coleman M, O'Brien RA. Abnormalities in platelet 5-hydroxytryptamine efflux in patients with infantile autism. Nature. 1970;226(5243):371–372.
  • Adolfsson R, Gottfries CG, Oreland L, et al. Increased activity of brain and platelet monoamine oxidase in dementia of Alzheimer type. Life Sci. 1980;27(12):1029–1034.
  • Ehrlich D, Humpel C. Platelets in psychiatric disorders. World J Psychiatry. 2012;2(6):91.
  • Kniewallner KM, Ehrlich D, Kiefer A, et al. Platelets in the Alzheimer’s disease brain: do they play a role in cerebral amyloid angiopathy? Curr Neurovasc Res. 2015;12(1):4–14.
  • Daly ME. Determinants of platelet count in humans. Haematologica. 2011;96(1):10–13.
  • del Zoppo GJ, von Kummer RÜ, Hamann GF. Ischaemic damage of brain microvessels: inherent risks for thrombolytic treatment in stroke. J Neurol Neurosurg Psychiatry. 1998;65(1):1–9.
  • Marquardt L, Ruf A, Mansmann U, et al. Course of platelet activation markers after ischemic stroke. Stroke. 2002;33(11):2570–2574.
  • Bath P, Algert C, Chapman N, et al. Association of mean platelet volume with risk of stroke among 3134 individuals with history of cerebrovascular disease. Stroke. 2004;35(3):622–626.
  • Lai HM, Xu R, Yang YN, et al. Association of mean platelet volume with angiographic thrombus burden and short‐term mortality in patients with ST‐segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. Cathet Cardiovasc Intervent. 2015;85(S1):724–733.
  • Du J, Wang Q, He B, et al. Association of mean platelet volume and platelet count with the development and prognosis of ischemic and hemorrhagic stroke. Int J Lab Hematol. 2016;38(3):233–239.
  • Maguire JM, Thakkinstian A, Sturm J, et al. Polymorphisms in platelet glycoprotein 1bα and factor VII and risk of ischemic stroke: a meta-analysis. Stroke. 2008;39(6):1710–1716.
  • Meisinger C, Prokisch H, Gieger C, et al. A genome-wide association study identifies three loci associated with mean platelet volume. Am J Hum Genet. 2009;84(1):66–71.
  • Vasudeva K, Munshi A. Genetics of platelet traits in ischaemic stroke: focus on mean platelet volume and platelet count. Int J Neurosci. 2019;129(5):511–522.
  • Ghevaert C, Salsmann A, Watkins NA, et al. nonsynonymous SNP in the ITGB3 gene disrupts the conserved membrane-proximal cytoplasmic salt bridge in the αIIbβ3 integrin and cosegregates dominantly with abnormal proplatelet formation and macrothrombocytopenia. Blood. 2008;111(7):3407–3414.
  • Bury L, Malara A, Gresele P, et al. Outside-in signalling generated by a constitutively activated integrin αIIbβ3 impairs proplatelet formation in human megakaryocytes. PLoS One. 2012;7(4):e34449.
  • Tohgi H, Suzuki H, Tamura K, et al. Platelet volume, aggregation, and adenosine triphosphate release in cerebral thrombosis. Stroke. 1991;22(1):17–21.
  • O’Malley T, Langhorne P, Elton RA, et al. Platelet size in stroke patients. Stroke. 1995;26(6):995–999.
  • Butterworth RJ. The relationship between mean platelet volume, stroke subtype and clinical outcome. Platelets. 1998;9(6):359–364.
  • Yang M, Pan Y, Li Z, et al. Platelet count predicts adverse clinical outcomes after ischemic stroke or TIA: subgroup analysis of CNSR II. Front Neurol. 2019;10:370.
  • Brown AS, Martin JF. The megakaryocyte platelet system and vascular disease. Eur J Clin Investig. 1994;24(S1):9–15.
  • Vyas P, McDevitt MA, Cantor AB, et al. Different sequence requirements for expression in erythroid and megakaryocytic cells within a regulatory element upstream of the GATA-1 gene. Development. 1999;126(12):2799–2811.
  • Kunishima S, Kobayashi R, Itoh TJ, et al. Mutation of the β1-tubulin gene associated with congenital macrothrombocytopenia affecting microtubule assembly. Blood. 2009;113(2):458–461.
  • Rius-Pérez S, Tormos AM, Pérez S, et al. Vascular pathology: cause or effect in Alzheimer disease? Neurología (Engl. Ed.). 2018;33(2):112–120.
  • Catricala S, Torti M, Ricevuti G. Alzheimer disease and platelets: how’s that relevant. Immun Ageing. 2012;9(1):20.
  • Canobbio I, Visconte C, Momi S, et al. Platelet amyloid precursor protein is a modulator of venous thromboembolism in mice. Blood. 2017;130(4):527–536.
  • Padovani A, Pastorino L, Borroni B, et al. Amyloid precursor protein in platelets: a peripheral marker for the diagnosis of sporadic AD. Neurology. 2001;57(12):2243–2248.
  • Cupello A, Favale E, Audenino D, et al. Decrease of serotonin transporters in blood platelets after epileptic seizures. Neurochem Res. 2005;30(4):425–428.
  • Rainesalo S, Keränen T, Saransaari P, et al. GABA and glutamate transporters are expressed in human platelets. Mol Brain Res. 2005;141(2):161–165.
  • Plagg B, Marksteiner J, Kniewallner KM, et al. Platelet dysfunction in hypercholesterolemia mice, two Alzheimer’s disease mouse models and in human patients with Alzheimer’s disease. Biogerontology. 2015;16(4):543–558.
  • Ponomarev ED. Fresh evidence for platelets as neuronal and innate immune cells: their role in the activation, differentiation, and deactivation of Th1, Th17, and tregs during tissue inflammation. Front Immunol. 2018;9:406.
  • Tufekci KU, Meuwissen R, Genc S, et al. Inflammation in Parkinson’s disease. In Rossen D, editor. Advances in protein chemistry and structural biology. Vol. 88. 2012. United Kingdom (UK): Academic Press. p. 69–132.
  • Koçer A, Yaman A, Niftaliyev E, et al. Assessment of platelet indices in patients with neurodegenerative diseases: mean platelet volume was increased in patients with Parkinson’s disease. Curr Gerontol Geriatr Res. 2013;2013:1–5.
  • Tanik N, Milanlioglu A, Okyay MY, et al. The relationship between neuroinflammation, MPV and Parkinson’s disease. Eur Geriatr Med. 2013;6(4):418–419.
  • Barnum CJ, Tansey MG. Neuroinflammation and non-motor symptoms: the dark passenger of Parkinson’s disease? Curr Neurol Neurosci Rep. 2012;12(4):350–358.
  • Yazici S, Yazici M, Erer B, et al. The platelet indices in patients with rheumatoid arthritis: mean platelet volume reflects disease activity. Platelets. 2010;21(2):122–125.
  • Asor E, Ben-Shachar D. Platelets: a possible glance into brain biological processes in schizophrenia. World J Psychiatry. 2012;2(6):124.
  • Osinga TE, van der Horst-Schrivers AN, van Faassen M, et al. Dopamine concentration in blood platelets is elevated in patients with head and neck paragangliomas. Clin Chem Lab Med. 2016;54(8):1395–1401.
  • Dietrich-Muszalska A, Olas B. The changes of aggregability of blood platelets in schizophrenia. World J Biol Psychiatry. 2009;10(2):171–176.
  • Dietrich-Muszalska A, Wachowicz B. Platelet haemostatic function in psychiatric disorders: effects of antidepressants and antipsychotic drugs. World J Biol Psychiatry. 2017;18(8):564–574.
  • Saluk-Bijak J, Dziedzic A, Bijak M. Pro-thrombotic activity of blood platelets in multiple sclerosis. Cells. 2019;8(2):110.
  • Plantone D, Inglese M, Salvetti M, et al. A perspective of coagulation dysfunction in multiple sclerosis and in experimental allergic encephalomyelitis. Front Neurol. 2018;9:1175.
  • Dukhinova MS, Ponomarev ED. Role of platelets in neuroinflammatory disorders. A review. Moscow Univ Biol Sci Bull. 2018;73(3):97–103.
  • Steinman L. Platelets provide a bounty of potential targets for therapy in multiple sclerosis. Circ Res. 2012;110(9):1157–1158.
  • Sato D, Callegaro D, Lana-Peixoto MA, et al. Treatment of neuromyelitis optica: an evidence based review. Arq Neuro-Psiquiatr. 2012;70(1):59–66.
  • De Luca C, Colangelo AM, Alberghina L, et al. Neuro-immune hemostasis: homeostasis and diseases in the central nervous system. Front Cell Neurosci. 2018;12:459.
  • Bijak M, Olejnik A, Rokita B, et al. Increased level of fibrinogen chains in the proteome of blood platelets in secondary progressive multiple sclerosis patients. J Cell Mol Med. 2019;23(5):3476–3482.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.