750
Views
12
CrossRef citations to date
0
Altmetric
Review

Epigenetic aspects of multiple sclerosis and future therapeutic options

, , , , ORCID Icon & ORCID Icon
Pages 56-64 | Received 22 May 2019, Accepted 09 Feb 2020, Published online: 25 Feb 2020

References

  • Urdinguio RG, Sanchez-Mut JV, Esteller M. Epigenetic mechanisms in neurological diseases: genes, syndromes, and therapies. Lancet Neurol. 2009;8(11):1056–1072.
  • Lauer K. Environmental risk factors in multiple sclerosis. Expert Rev Neurother. 2010;10(3):421–440.
  • Oksenberg JR, Baranzini SE. Multiple sclerosis genetics—is the glass half full, or half empty? Nat Rev Neurol. 2010;6(8):429–437.
  • Hauser SL, Oksenberg JR. The neurobiology of multiple sclerosis: genes, inflammation, and neurodegeneration. Neuron. 2006;52(1):61–76.
  • Noseworthy JH, Lucchinetti C, Rodriguez M, et al. Multiple sclerosis. N Engl J Med. 2000;343(13):938–952.
  • Ramagopalan SV, Dobson R, Meier UC, et al. Multiple sclerosis: risk factors, prodromes, and potential causal pathways. Lancet Neurol. 2010;9(7):727–739.
  • Aslani S, Jafari N, Javan MR, et al. Epigenetic modifications and therapy in multiple sclerosis. Neuromol Med. 2017;19(1):11–23.
  • Keller A, Leidinger P, Lange J, et al. Multiple sclerosis: microRNA expression profiles accurately differentiate patients with relapsing-remitting disease from healthy controls. PloS One. 2009;4(10):e7440.
  • Zheleznyakova GY, Piket E, Marabita F, et al. Epigenetic research in multiple sclerosis: progress, challenges, and opportunities. Physiol Genomics. 2017;49(9):447–461.
  • Lassmann H. Multiple sclerosis pathology. Cold Spring Harb Perspect Med. 2018;8(3):a028936.
  • Mahad DH, Trapp BD, Lassmann H. Pathological mechanisms in progressive multiple sclerosis. Lancet Neurol. 2015;14(2):183–193.
  • Milo R, Kahana E. Multiple sclerosis: geoepidemiology, genetics and the environment. Autoimmunity Rev. 2010;9(5):A387–A94.
  • Ebers GC. Environmental factors and multiple sclerosis. Lancet Neurol. 2008;7(3):268–277.
  • Xia Z, White CC, Owen EK, et al. Genes and Environment in Multiple Sclerosis project: a platform to investigate multiple sclerosis risk. Ann Neurol. 2016;79(2):178–189.
  • Carton H, Vlietinck R, Debruyne J, et al. Risks of multiple sclerosis in relatives of patients in Flanders, Belgium. J Neurol Neurosurg Psychiatry. 1997;62(4):329–333.
  • Robertson N, Fraser M, Deans J, et al. Age–adjusted recurrence risks for relatives of patients with multiple sclerosis. Brain. 1996;119(2):449–455.
  • Alfredsson L, Olsson T. Lifestyle and environmental factors in multiple sclerosis. Cold Spring Harb Perspect Med. 2019;9(4):a028944
  • Houzen H, Kondo K, Horiuchi K, et al. Consistent increase in the prevalence and female ratio of multiple sclerosis over 15 years in northern Japan. Eur J Neurol. 2018;25(2):334–339.
  • Ebers GC, Bulman DE, Sadovnick AD, et al. A population-based study of multiple sclerosis in twins. N Engl J Med. 1986;315(26):1638–1642.
  • Kragt J, Van Amerongen B, Killestein J, et al. Higher levels of 25-hydroxyvitamin D are associated with a lower incidence of multiple sclerosis only in women. Mult Scler. 2009;15(1):9–15.
  • Zulet MI, Fontes LP, Blanco TA, et al. Epigenetic changes in neurology: DNA methylation in multiple sclerosis. Neurología. 2017;32(7):463–468.
  • Olsson T, Barcellos LF, Alfredsson L. Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis. Nat Rev Neurol. 2017;13(1):25–36.
  • Sawcer S, Franklin RJ, Ban M. Multiple sclerosis genetics. Lancet Neurol. 2014;13(7):700–709.
  • Simon K, Van der Mei I, Munger K, et al. Combined effects of smoking, anti-EBNA antibodies, and HLA-DRB1* 1501 on multiple sclerosis risk. Neurology. 2010;74(17):1365–1371.
  • van den Elsen PJ, van Eggermond MC, Puentes F, et al. The epigenetics of multiple sclerosis and other related disorders. Multiple Sclerosis Relat Disord. 2014;3(2):163–175.
  • Akkad D, Hoffjan S, Petrasch-Parwez E, et al. Variation in the IL7RA and IL2RA genes in German multiple sclerosis patients. J Autoimmunity. 2009;32(2):110–115.
  • Küçükali Cİ, Kürtüncü M, Çoban A, et al. Epigenetics of multiple sclerosis: an updated review. Neuromol Med. 2015;17(2):83–96.
  • Baranzini SE, Nickles D. Genetics of multiple sclerosis: swimming in an ocean of data. Curr Opin Neurol. 2012;25(3):239–245.
  • Robertson C. Epigenetics of multiple sclerosis. SURG. 2014;7(2):41–48.
  • Castro K, Casaccia P. Epigenetic modifications in brain and immune cells of multiple sclerosis patients. Mult Scler. 2018;24(1):69–74.
  • Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science. 2001;293(5532):1089–1093.
  • Gibney E, Nolan C. Epigenetics and gene expression. Heredity. 2010;105(1):4–13.
  • Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet. 2003;33(S3):245–254.
  • Koch MW, Metz LM, Kovalchuk O. Epigenetic changes in patients with multiple sclerosis. Nat Rev Neurol. 2013;9(1):35–43.
  • Graves M, Benton M, Lea R, et al. Methylation differences at the HLA-DRB1 locus in CD4+ T-Cells are associated with multiple sclerosis. Mult Scler. 2014;20(8):1033–1041.
  • Handel AE, De Luca GC, Morahan J, et al. No evidence for an effect of DNA methylation on multiple sclerosis severity at HLA-DRB1* 15 or HLA-DRB5. J Neuroimmunol. 2010;223(1-2):120–123.
  • Calabrese R, Zampieri M, Mechelli R, et al. Methylation-dependent PAD2 upregulation in multiple sclerosis peripheral blood. Mult Scler. 2012;18(3):299–304.
  • Huang K, Fan G. DNA methylation in cell differentiation and reprogramming: an emerging systematic view. Regener Med. 2010;5(4):531–544.
  • Fan S, Zhang X. CpG island methylation pattern in different human tissues and its correlation with gene expression. Biochem Biophys Res Commun. 2009;383(4):421–425.
  • Burrell AM, Handel AE, Ramagopalan SV, et al. Epigenetic mechanisms in multiple sclerosis and the major histocompatibility complex (MHC). Discov Med. 2011;11(58):187–196.
  • Floess S, Freyer J, Siewert C, et al. Epigenetic control of the foxp3 locus in regulatory T cells. PLoS Biol. 2007;5(2):e38.
  • Bibikova M, Barnes B, Tsan C, et al. High density DNA methylation array with single CpG site resolution. Genomics. 2011;98(4):288–295.
  • Quintero-Ronderos P, Montoya-Ortiz G. Epigenetics and autoimmune diseases. Autoimmune Dis. 2012;2012:1–16.
  • Baranzini SE, Mudge J, Van Velkinburgh JC, et al. Genome, epigenome and RNA sequences of monozygotic twins discordant for multiple sclerosis. Nature. 2010;464(7293):1351–1356.
  • Sospedra M, Martin R. Immunology of multiple sclerosis. Annu Rev Immunol. 2005;23(1):683–747.
  • Ayuso T, Aznar P, Soriano L, et al. Vitamin D receptor gene is epigenetically altered and transcriptionally up-regulated in multiple sclerosis. PloS One. 2017;12(3):e0174726.
  • Field J, Fox A, Jordan M, et al. Interleukin-2 receptor-α proximal promoter hypomethylation is associated with multiple sclerosis. Genes Immun. 2017;18(2):59–66.
  • Kumagai C, Kalman B, Middleton FA, et al. Increased promoter methylation of the immune regulatory gene SHP-1 in leukocytes of multiple sclerosis subjects. J Neuroimmunol. 2012;246(1-2):51–57.
  • Ruhrmann S, Ewing E, Piket E, et al. Hypermethylation of MIR21 in CD4+ T cells from patients with relapsing-remitting multiple sclerosis associates with lower miRNA-21 levels and concomitant up-regulation of its target genes. Mult Scler. 2018;24(10):1288–1300
  • Neven K, Piola M, Angelici L, et al. Repetitive element hypermethylation in multiple sclerosis patients. BMC Genet. 2016;17(1):84.
  • Maltby VE, Graves MC, Lea RA, et al. Genome-wide DNA methylation profiling of CD8+ T cells shows a distinct epigenetic signature to CD4+ T cells in multiple sclerosis patients. Clin Epigenet. 2015;7(1):118.
  • Bos SD, Page CM, Andreassen BK, et al. Genome-wide DNA methylation profiles indicate CD8+ T cell hypermethylation in multiple sclerosis. PloS One. 2015;10(3):e0117403.
  • Kulakova O, Kabilov M, Danilova L, et al. Whole-genome DNA methylation analysis of peripheral blood mononuclear cells in multiple sclerosis patients with different disease courses. Acta Naturae (англоязычная версия). 2016;8(3):30.
  • Moyon S, Huynh JL, Dutta D, et al. Functional characterization of DNA methylation in the oligodendrocyte lineage. Cell Rep. 2016;15(4):748–760.
  • Huynh JL, Garg P, Thin TH, et al. Epigenome-wide differences in pathology-free regions of multiple sclerosis–affected brains. Nat Neurosci. 2014;17(1):121–130.
  • Yun M, Wu J, Workman JL, et al. Readers of histone modifications. Cell Res. 2011;21(4):564–578.
  • Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21(3):381–395.
  • Allfrey V, Faulkner R, Mirsky A. Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci. 1964;51(5):786–794.
  • De Ruijter AJ, Van Gennip AH, Caron HN, et al. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J. 2003;370(3):737–749.
  • Hait NC, Wise LE, Allegood JC, et al. Active, phosphorylated fingolimod inhibits histone deacetylases and facilitates fear extinction memory. Nat Neurosci. 2014;17(7):971–980.
  • Pedre X, Mastronardi F, Bruck W, et al. Changed histone acetylation patterns in normal-appearing white matter and early multiple sclerosis lesions. J Neurosci. 2011;31(9):3435–3445.
  • Singhal N, Huang H, Li S, et al. The neuronal metabolite NAA regulates histone H3 methylation in oligodendrocytes and myelin lipid composition. Exp Brain Res. 2017;235(1):279–292.
  • Scaria V, Hariharan M, Maiti S, et al. Host-virus interaction: a new role for microRNAs. Retrovirology. 2006;3(1):68.
  • Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–297.
  • Huynh JL, Casaccia P. Epigenetic mechanisms in multiple sclerosis: implications for pathogenesis and treatment. Lancet Neurol. 2013;12(2):195–206.
  • Kacperska MJ, Jastrzebski K, Tomasik B, et al. Selected extracellular microRNA as potential biomarkers of multiple sclerosis activity—preliminary study. J Mol Neurosci. 2015;56(1):154–163.
  • Liggett T, Melnikov A, Tilwalli S, et al. Methylation patterns of cell-free plasma DNA in relapsing–remitting multiple sclerosis. J Neurol Sci. 2010;290(1-2):16–21.
  • Siegel SR, Mackenzie J, Chaplin G, et al. Circulating microRNAs involved in multiple sclerosis. Mol Biol Rep. 2012;39(5):6219–6225.
  • Lorenzi JCC, Brum DG, Zanette DL, et al. miR-15a and 16-1 are downregulated in CD4+ T cells of multiple sclerosis relapsing patients. Int J Neurosci. 2012;122(8):466–471.
  • Jafari N, Shaghaghi H, Mahmoodi D, et al. Overexpression of microRNA biogenesis machinery: drosha, DGCR8 and Dicer in multiple sclerosis patients. J Clin Neurosci. 2015;22(1):200–203.
  • Junker A, Krumbholz M, Eisele S, et al. MicroRNA profiling of multiple sclerosis lesions identifies modulators of the regulatory protein CD47. Brain. 2009;132(12):3342–3352.
  • Guerau-de-Arellano M, Smith KM, Godlewski J, et al. Micro-RNA dysregulation in multiple sclerosis favours pro-inflammatory T-cell-mediated autoimmunity. Brain. 2011;134(12):3578–3589.
  • Gandhi R, Healy B, Gholipour T, et al. Circulating microRNAs as biomarkers for disease staging in multiple sclerosis. Ann Neurol. 2013;73(6):729–740.
  • Waschbisch A, Atiya M, Linker RA, et al. Glatiramer acetate treatment normalizes deregulated microRNA expression in relapsing remitting multiple sclerosis. PloS One. 2011;6(9):e24604.
  • J van der Star B, Ys Vogel D, Kipp M, et al. In vitro and in vivo models of multiple sclerosis. CNS Neurol Disord Drug Targets. 2012;11(5):570–588.
  • Camelo S, Iglesias AH, Hwang D, et al. Transcriptional therapy with the histone deacetylase inhibitor trichostatin A ameliorates experimental autoimmune encephalomyelitis. J Neuroimmunol. 2005;164(1-2):10–21.
  • Ge Z, Da Y, Xue Z, et al. Vorinostat, a histone deacetylase inhibitor, suppresses dendritic cell function and ameliorates experimental autoimmune encephalomyelitis. Exp Neurol. 2013;241:56–66.
  • Zhang Z, Zhang Z-Y, Wu Y, et al. Valproic acid ameliorates inflammation in experimental autoimmune encephalomyelitis rats. Neuroscience. 2012;221:140–150.
  • Shindler KS, Ventura E, Dutt M, et al. Oral resveratrol reduces neuronal damage in a model of multiple sclerosis. J Neuro-Ophthalmol. 2010;30(4):328–339.
  • Karimian MS, Pirro M, Majeed M, Sahebkar A. Curcumin as a natural regulator of monocyte chemoattractant protein-1. Cytokine Growth Factor Rev. 2017;33:55–63.
  • Momtazi AA, Derosa G, Maffioli P, et al. Role of microRNAs in the Therapeutic Effects of Curcumin in Non-Cancer Diseases. Mol Diagn Ther. 2016;20(4):335–345.
  • Panahi Y, Hosseini MS, Khalili N, et al. Effects of curcumin on serum cytokine concentrations in subjects with metabolic syndrome: a post-hoc analysis of a randomized controlled trial. Biomed Pharmacother. 2016;82:578–582.
  • Panahi Y, Kianpour P, Mohtashami R, et al. Efficacy and safety of phytosomal curcumin in non-alcoholic fatty liver disease: a randomized controlled trial. Drug Res . 2017;67(4):244–251.
  • Rezaee R, Momtazi AA, Monemi A, et al. Curcumin: a potentially powerful tool to reverse cisplatin-induced toxicity. Pharmacol Res. 2017;117:218–227.
  • Xie L, Li X-K, Funeshima-Fuji N, et al. Amelioration of experimental autoimmune encephalomyelitis by curcumin treatment through inhibition of IL-17 production. Int Immunopharmacol. 2009;9(5):575–581.
  • Chan MW, Chang C-B, Tung C-H, et al. Low-dose 5-aza-2′-deoxycytidine pretreatment inhibits experimental autoimmune encephalomyelitis by induction of regulatory T cells. Mol Med. 2014;20(1):248–256.
  • Ntranos A, Ntranos V, Bonnefil V, et al. Fumarates target the metabolic-epigenetic interplay of brain-homing T cells in multiple sclerosis. Brain. 2019;142(3):647–661.
  • Moyon S, Ma D, Huynh JL, et al. Efficient remyelination requires DNA methylation. eNeuro. 2017;4(2):ENEURO.0336-16.2017.
  • Du C, Liu C, Kang J, et al. MicroRNA miR-326 regulates T H-17 differentiation and is associated with the pathogenesis of multiple sclerosis. Nat Immunol. 2009;10(12):1252–1259.
  • Boerner C, Martella E, Hoellt V, et al. Regulation of opioid and cannabinoid receptor genes in human neuroblastoma and T cells by the epigenetic modifiers trichostatin A and 5-aza-2’-deoxycytidine. Neuroimmunomodulation. 2012;19(3):180–186.
  • Mangano K, Fagone P, Bendtzen K, et al. Hypomethylating Agent 5‐Aza‐2′‐deoxycytidine (DAC) Ameliorates Multiple Sclerosis in Mouse Models. J Cell Physiol. 2014;229(12):1918–1925.
  • Kalinin S, Polak PE, Lin SX, et al. Dimethyl fumarate regulates histone deacetylase expression in astrocytes. J Neuroimmunol. 2013;263(1-2):13–19.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.