491
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

Global and regional connectivity analysis of resting-state function MRI brain images using graph theory in Parkinson’s disease

ORCID Icon & ORCID Icon
Pages 105-115 | Received 05 Mar 2019, Accepted 11 Feb 2020, Published online: 03 Mar 2020

References

  • DeMaagd G, Philip A. Parkinson’s disease and its management: part 1: disease entity, risk factors, pathophysiology, clinical presentation, and diagnosis. Pharm Ther. 2015;40(8):504–532.
  • Lima MMS, Martins EF, Marcia Delattre A, et al. Motor and non-motor features of parkinson’s disease – a review of clinical and experimental studies. CNS Neurol Disord Drug Targets. 2012;11(4):439–449.
  • Fasano A, Daniele A, Albanese A. Treatment of motor and non-motor features of Parkinson’s disease with deep brain stimulation. Lancet Neurol. 2012;11(5):429–442.
  • Göttlich M, Münte TF, Heldmann M, et al. Altered resting state brain networks in Parkinson’s disease. PLoS One. 2013;8(10):e77336.
  • de Haan W, Pijnenburg YAL, Strijers RLM, et al. Functional neural network analysis in frontotemporal dementia and Alzheimer’s disease using EEG and graph theory. BMC Neurosci. 2009;10(1):101.
  • Adler CH, Beach TG, Hentz JG, et al. Low clinical diagnostic accuracy of early vs advanced Parkinson disease: Clinicopathologic study. Neurology. 2014;83(5):406–412.
  • Hewavitharanage S, Gubbi J, Thyagarajan D, et al. Automatic segmentation of the rima glottidis in 4D laryngeal CT scans in Parkinson’s disease. Conf Proc IEEE Eng Med Biol Soc. 2015;2015:739–742.
  • Jain S, Salimpour Y, Younes L, et al. Application of pattern recognition framework for quantification of Parkinson’s disease in DAT SPECT imaging. 2014 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC); Seattle, WA. IEEE; 2014. p. 1–8.
  • Klyuzhin IS, Blinder S, Mabrouk R, et al. Investigation of texture quantification parameters for neurological PET image analysis. 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC); San Diego, CA. IEEE; 2015. p. 1–5.
  • Oh SL, Hagiwara Y, Raghavendra U, et al. A deep learning approach for Parkinson’s disease diagnosis from EEG signals. Neural Comput. Appl. 2018;1–7.
  • Ly QT, Gilat M, Chai R, et al. Detection of turning freeze in Parkinson’s disease based on S-transform decomposition of EEG signals. Conf Proc IEEE Eng Med Biol Soc. 2017:2017;3044–3047.
  • Stoffers D, Bosboom J, Deijen JB, et al. Increased cortico-cortical functional connectivity in early-stage Parkinson's disease: An MEG study. NeuroImage. 2008;41(2):212–222.
  • Pahuja G, Nagabhushan TN. A novel GA-ELM approach for Parkinson’s disease detection using brain structural T1-weighted MRI data. 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS); Seogwipo. IEEE; 2017. p. 3044–3047.
  • Olde Dubbelink KTE, Hillebrand A, Stoffers D, et al. Disrupted brain network topology in Parkinson’s disease: a longitudinal magnetoencephalography study. Brain. 2014;137(1):197–207.
  • Utianski RL, Caviness JN, van Straaten ECW, et al. Graph theory network function in parkinson’s disease assessed with electroencephalography. Clin Neurophysiol. 2016;127(5):2228–2236.
  • Zheng Z, Shemmassian S, Wijekoon C, et al. DTI correlates of distinct cognitive impairments in Parkinson’s disease. Hum Brain Mapp. 2014;35(4):1325–1333.
  • Rana B, Juneja A, Saxena M, et al. Graph-theory-based spectral feature selection for computer aided diagnosis of Parkinson’s disease using T1-weighted MRI. Int J Imaging Syst Technol. 2015;25(3):245–255.
  • Koshimori Y, Cho SS, Criaud M, et al. Disrupted nodal and hub organization account for brain network abnormalities in Parkinson’s disease. Front Aging Neurosci. 2016;8:259.
  • Yau Y, Zeighami Y, Baker TE, et al. Network connectivity determines cortical thinning in early Parkinson’s disease progression. Nat. Commun. 2018;9(1):12.
  • Xu X, Guan X, Guo T, et al. Brain atrophy and reorganization of structural network in Parkinson’s disease with hemiparkinsonism. Front Hum Neurosci. 2018;12:117.
  • Li C, Huang B, Zhang R, et al. Impaired topological architecture of brain structural networks in idiopathic Parkinson’s disease: a DTI study. Brain Imaging Behav. 2017;11(1):113–128.
  • Ibarretxe-Bilbao N, Junque C, Marti MJ, et al. Brain structural MRI correlates of cognitive dysfunctions in Parkinson’s disease. J Neurol Sci. 2011;310(1-2):70–74.
  • Baggio HC, Sala-Llonch R, Segura B, et al. Functional brain networks and cognitive deficits in Parkinson’s disease. Hum Brain Mapp. 2014;35(9):4620–4634.
  • Kim J, Criaud M, Cho SS, et al. Abnormal intrinsic brain functional network dynamics in Parkinson’s disease. Brain. 2017;140(11):2955–2967.
  • DM, Akbari S, Fatemizadeh E. Functional brain networks in Parkinson’s disease. 2017 24th National and 2nd International Iranian Conference on Biomedical Engineering (ICBME); Tehran. 2017. p. 330–333.
  • Díez-Cirarda M, Strafella AP, Kim J, et al. Dynamic functional connectivity in Parkinson’s disease patients with mild cognitive impairment and normal cognition. NeuroImage Clin. 2018;17:847–855.
  • Zhang D, Wang J, Liu X, et al. Aberrant brain network efficiency in Parkinson’s disease patients with tremor: a multi-modality study. Front Aging Neurosci. 2015;7:169.
  • Marek K, Jennings D, Lasch S, et al. The Parkinson progression marker initiative (PPMI). Prog Neurobiol. 2011;95(4):629–635.
  • Wang J, Wang X, Xia M, et al. GRETNA: A graph theoretical network analysis toolbox for imaging connectomics. Front Hum Neurosci. 2015;9:386.
  • Dosenbach NUF, Nardos B, Cohen AL, et al. Prediction of individual brain maturity using fMRI. Science 2010;329(5997):1358–1361.
  • Li Z, Chen R, Guan M, et al. Disrupted brain network topology in chronic insomnia disorder: a resting-state fMRI study. NeuroImage Clin. 2018;18:178–185.
  • Miller IN, Cronin-Golomb A. Gender differences in Parkinson’s disease: clinical characteristics and cognition. Mov Disord. 2010;25(16):2695–2703.
  • Yadav SK, Kathiresan N, Mohan S, et al. Gender-based analysis of cortical thickness and structural connectivity in Parkinson’s disease. J Neurol. 2016;263(11):2308–2318.
  • Bahrami M, Hossem-Zadeh GA. Assortativity changes in Alzheimer’s diesease: a resting-state FMRI study. 2015 23rd Iranian Conference on Electrical Engineering; Tehran. IEEE; 2015. p. 141–144.
  • Noldus R, Van Mieghem P. Assortativity in complex networks. J Complex Netw. 2015;3(4):507–542.
  • Krot A, Prokhorenkova LO. Assortativity in generalized preferential attachment models. International Workshop on Algorithms and Models for the Web-Graph; Springer, Cham. 2016. p. 9–21.
  • Chen Z, Hu X, Chen Q, et al. Altered structural and functional brain network overall organization predict human intertemporal decision-making. Hum Brain Mapp. 2019;40(1):306–328.
  • Mones E, Vicsek L, Vicsek T. Hierarchy measure for complex networks. PLoS One. 2012;7(3):e33799.
  • Rubchinsky LL, Park C, Worth RM. Intermittent neural synchronization in Parkinson’s disease. Nonlinear Dyn. 2012;68(3):329–346.
  • Sengupta A, Routray A, Datta S. Brain networks using nonlinear interdependence-based EEG synchronization: a study of human fatigue. 2016 International Conference on Systems in Medicine and Biology (ICSMB); 2016. p. 170–173.
  • Zhou C, Zemanová L, Zamora-López G, et al. Structure-function relationship in complex brain networks expressed by hierarchical synchronization. New J Phys. 2007;9(6):178–178.
  • Liu J, Li M, Pan Y, et al. Complex brain network analysis and its applications to brain disorders: a survey. Complexity. 2017;2017:1–27.
  • Wang Y, Zhang J, Zhang G, et al. Changes in the brain’s intrinsic organization in the resting state with real-time fmri neurofeedback training of posterior cingulate cortex activity. J Behav Brain Sci. 2017;7(13):655–673.
  • Wang J, Zuo X, He Y. Graph-based network analysis of resting-state functional MRI. Front Syst Neurosci. 2010;4:16.
  • Xuan H, Gan C, Li W, et al. Altered network efficiency of functional brain networks in patients with breast cancer after chemotherapy. Oncotarget. 2017;8(62):105648.
  • Zhu H, Qiu C, Meng Y, et al. Altered topological properties of brain networks in social anxiety disorder: a resting-state functional MRI study. Sci Rep. 2017;7:43089.
  • Suh S, Kim H, Dang-Vu TT, et al. Cortical thinning and altered cortico-cortical structural covariance of the default mode network in patients with persistent insomnia symptoms. Sleep. 2016;39(1):161–171.
  • Uribe C, Segura B, Baggio HC, et al. Cortical atrophy patterns in early Parkinson’s disease patients using hierarchical cluster analysis. Park Relat Disord. 2018;50:3–9.
  • Zhang D, Liu X, Chen J, et al. Widespread increase of functional connectivity in Parkinson’s disease with tremor: a resting-state fMRI study. Front Aging Neurosci. 2015;7:6.
  • Luo CY, Guo XY, Song W, et al. Functional connectome assessed using graph theory in drug-naive Parkinson’s disease. J Neurol. 2015;262(6):1557–1567.
  • Abe Y, Kachi T, Kato T, et al. Occipital hypoperfusion in Parkinson’s disease without dementia: correlation to impaired cortical visual processing. J Neurol Neurosurg Psychiatry. 2003;74(4):419–422.
  • Burton EJ, McKeith IG, Burn DJ, et al. Cerebral atrophy in Parkinson’s disease with and without dementia: A comparison with Alzheimer’s disease, dementia with Lewy bodies and controls. Brain. 2004;127(4):791–800.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.