385
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Melatonin effects on EEG activity during non-rapid eye movement sleep in mild-to-moderate Alzheimer´s disease: a pilot study

, , , &
Pages 580-590 | Received 14 Jun 2019, Accepted 21 Mar 2020, Published online: 13 Apr 2020

References

  • Masters CL, Bateman R, Blennow K, et al. Alzheimer disease. Nat Rev Dis Primers. 2015;1(1):15056.
  • Van Erum J, Van Dam D, De Deyn PP. Sleep and Alzheimer’s disease: A pivotal role for the suprachiasmatic nucleus. Sleep Med Rev. 2018;40:17–27.
  • Peter-Derex L, Yammine P, Bastuji H, et al. Sleep and Alzheimer’s disease. Sleep Med Rev. 2015;19:29–38.
  • McCleery J, Cohen DA, Sharpley AL. Pharmacotherapies for sleep disturbances in dementia. Cochrane Database Syst Rev. 2016;11:CD009178.
  • Claustrat B, Brun J, Chazot G. The basic physiology and pathophysiology of melatonin. Sleep Med Rev. 2005;9(1):11–24.
  • Wang F, Jing-Cai LI, Chun-Fu WU, et al. Hypnotic activity of melatonin: Involvement of semicarbazide hydrochloride, blocker of synthetic enzyme for GABA. Acta Pharmacol Sin. 2002;23:860–864.
  • Xu F, Li JC, Ma KC, et al. Effects of Melatonin on Hypothalamic γ-Aminobutyric Acid, Aspartic Acid, Glutamic Acid, β-Endorphin and Serotonin Levels in Male Mice. Biol Signals. 1995;4(4):225–231.
  • Golombek DA, Pévet P, Cardinali DP. Melatonin effects on behavior: Possible mediation by the central GABAergic system. Neurosci Biobehav Rev. 1996;20(3):403–412.
  • Acufla-Castroviejo D, Escames G, Muñoz-Hoyos A, et al. Minireview: Cell protective role of melatonin in the brain. J Pineal Res. 1995;19(2):57–63.
  • Saper CB, Scammell TE, Lu J. Hypothalamic regulation of sleep and circadian rhythms. Nature. 2005;437(7063):1257–1263.
  • Llinás RR, Steriade M. Bursting of thalamic neurons and states of vigilance. J Neurophysiol. 2006;95(6):3297–3308.
  • Datta S, MacLean RR. Neurobiological mechanisms for the regulation of mammalian sleep-wake behavior: Reinterpretation of historical evidence and inclusion of contemporary cellular and molecular evidence. Neurosci Biobehav Rev. 2007;31(5):775–824.
  • Mignot E. Why we sleep: The temporal organization of recovery. PLoS Biol. 2008;6(4):e106.
  • Manns ID, Alonso A, Jones BA. Discharge properties of juxtacellularly labeled and immunohistochemically identified cholinergic basal forebrain neurons recorded in association with the electroencephalogram in anesthetized rats. J Neurosci. 2000;20(4):1505–1518.
  • Lee MG, Manns ID, Alonso A, et al. Sleep wake related discharge properties of basal forebrain neurons recorded with micropipettes in head-fixed rats. J Neurophysiol. 2004;92(2):1182–1198.
  • Datta S. Cellular and chemical neuroscience of mammalian sleep. Sleep Med. 2010;11(5):431–440.
  • Krishnan GP, Chauvette S, Shamie I, et al. Cellular and neurochemical basis of sleep stages in the thalamocortical network. Elife. 2016;5:e18607.
  • De Andrés I, Garzón M, Reinoso-Suárez F. Functional anatomy of non-REM sleep. Front Neurol. 2011;2:70.
  • Cruz-Aguilar MA, Ramírez-Salado I, Cruz-Ulloa C, et al. Melatonin effects on macro sleep architecture in Alzheimer’s disease patients. Salud Ment. 2013;36(4):271–277.
  • Cruz-Aguilar MA, Ramírez-Salado I, Guevara MA, et al. Melatonin Effects on EEG Activity During Sleep Onset in Mild-to-Moderate Alzheimer’s Disease: A Pilot Study. ADR. 2018;2(1):55–65.
  • Merica H, Fortune RD. State transitions between wake and sleep, and within the ultradian cycle, with focus on the link to neuronal activity. Sleep Med Rev. 2004;8(6):473–485.
  • De Gennaro L, Vecchio F, Ferrara M, et al. Changes in fronto-posterior functional coupling during sleep onset in humans. J Sleep Res. 2004;13(3):209–217.
  • Hori T. Spatiotemporal changes of EEG activity during waking-sleeping transition period. Int J Neurosci. 1985;27(1-2):101–114.
  • Wright BP, Jr, Kenneth P, Wauquier A. Fluctuations in single-hertz EEG activity during the transition to sleep. In: Ogilvie RD, Harsh JR, editor. Sleep Onset: Normal and Abnormal Processes. Washington DC, US: American Psychological Association; 1994. p. 201–218.
  • Wright KP, Jr, Badia P, Wauquier A. Topographical and temporal patterns of brain activity during the transition from wakefulness to sleep. Sleep. 1995;18(10):880–889.
  • De Gennaro L, Ferrara M, Bertini M. The boundary between wakefulness and sleep: Quantitative electroencephalographic changes during the sleep onset period. Neuroscience. 2001;107(1):1–11.
  • Tarokh L, Carskadon MA. Developmental changes in the human sleep EEG during early adolescence. Sleep. 2010;33(6):801–809.
  • McKhann G, Drachman D, Folstein M, et al. Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s disease. Neurology. 1984;34(7):939–944.
  • Hughes C, Berg L, Danziger WL, et al. new clinical scale for the staging of dementia. Br J Psychiatry. 1982;140(6):566–572.
  • Barry PP, Moskowitz MA. The diagnosis of reversible dementia in the elderly: A critical review. Arch Intern Med. 1988;148(9):1914–1918.
  • Chari D, Ali R, Gupta R. Reversible dementia in elderly: Really uncommon?. J Geriatr Ment Health. 2015;2(1):30–37.
  • Jasper HH. The ten–twenty electrode system of the International Federation. Electroencephalogr Clin Neurophysiol. 1958;10:367–380.
  • Rechtschaffen A, Kales A. A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects. Los Angeles, Calif: Brain Information Service/Brain Research Institute University of California; 1968.
  • Guevara MA, Hernández-González M, Sanz-Martin A, et al. CHECASEN: Programa para revisar señales EEG fuera de línea. Rev Mex Ing Biom. 2010;31:135–141.
  • Guevara MA, Hernández-González M. EEGmagic: Programa para analizar señales electroencefalográficas. Rev Mex Ing Biom. 2009;30:41–53.
  • Benjamini Y, Hochberg Y. Controlling the false discovery rate - a practical and powerful approach to multiple testing. J Roy Stat Soc B Met. 1995;57(1):289–300.
  • Achermann P, Borbély AA. Temporal evolution of coherence and power in the human sleep electroencephalogram. J Sleep Res. 1998;7(S1):36–41.
  • Liu C, Weaver DR, Ji X, et al. Molecular dissection of two distinct actions of melatonin on the suprachiasmatic circadian clock. Neuron. 1997;19(1):91–102.
  • Jiang ZG, Nelson CS, Allen CN. Melatonin activates an outward current and inhibits Ih in rat suprachiasmatic nucleus neurons. Brain Res. 1995;687(1-2):125–132.
  • Nelson CS, Marino JL, Allen CN. Melatonin receptors activate heteromeric G-protein coupled Kir3 Channels. Neuroreport. 1996;7:717–720.
  • Dauvilliers Y, Schenck CH, Postuma RB, et al. REM sleep behaviour disorder. Nat Rev Dis Primers. 2018;4(1):19.
  • Neuper C, Wörtz M, Pfurtscheller G. ERD/ERS patterns reflecting sensorimotor activation and deactivation. Prog Brain Res. 2006;159:211–222.
  • Kropotov JD. Quantitative EEG, event related potentials and neurotherapy. San Diego: Academic Press, Elsevier; 2009. p.542.
  • Crone NE, Miglioretti DL, Gordon B, et al. Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. I. Alpha and beta event-related desynchronization. Brain. 1998;121(12):2271–2299.
  • Classen J, Liepert J, Wise SP, et al. Rapid plasticity of human cortical movement representation induced by practice. J Neurophysiol. 1998;79(2):1117–1123.
  • Pfurtscheller G, Neuper C. Motor imagery activates primary sensorimotor area in humans. Neurosci Lett. 1997;239(2-3):65–68.
  • Schober T, Wenzel K, Feichtinger M, et al. Restless legs syndrome: changes of induced electroencephalographic beta oscillations—an ERD/ERS study. Sleep. 2004;27(1):147–150.
  • Baker SN. Oscillatory interactions between sensorimotor cortex and the periphery. Curr Opin Neurol. 2007;17(6):649–655.
  • Bressler SL. The sensory component of tonic motor control. Clin Neurophysiol. 2009;120(6):1035–1036.
  • Zhang Y, Chen Y, Bressler SL, et al. Response preparation and inhibition: the role of the cortical sensorimotor beta rhythm. Neuroscience. 2008;156(1):238–246.
  • Cruz-Aguilar MA, Guevara MA, Hernández-González M, et al. Cortical beta EEG oscillations related to changes in muscle tone activity during sleep in spider monkey (Ateles geoffroyi). J Med Primatol. 2018;47(1):67–74.
  • Siegel JM. Sleep viewed as a state of adaptive inactivity. Nat Rev Neurosci. 2009;10(10):747–753.
  • De Gennaro L, Vecchio F, Ferrara M, et al. Antero-posterior functional coupling at sleep onset: Changes as a function of increased sleep pressure. Brain Res Bull. 2005;65(2):133–140.
  • Reinoso-Suárez F. The neurobiology of slow wave sleep. An R Acad Nac Med. 1999; 116:209–226.
  • Cardinali DP, Brusco LI, Liberczu C, et al. The use of melatonin in Alzheimer’s disease. Neuro Endocrinol Lett. 2002;23:20–23.
  • Selkoe DJ. Alzheimer’s disease is a synaptic failure. Science. 2002;298(5594):789–791.
  • Rissman RA, Mobley WC. Implications for treatment: GABAA receptors in aging, Down syndrome and Alzheimer’s disease. J Neurochem. 2011;117:613–622.
  • Luchetti S, Huitinga I, Swaab DF. Neurosteroid and GABA-A receptor alterations in Alzheimer’s disease, Parkinson’s disease and multiple sclerosis. Neuroscience. 2011;191:6–21.
  • Steriade M, McCormick DA, Sejnowski TJ. Thalamocortical oscillations in the sleeping and aroused brain. Science. 1993;262(5134):679–685.
  • Vanini G, Lydic R, Baghdoyan HA. GABA-to-ACh ratio in basal forebrain and cerebral cortex varies significantly during sleep. Sleep. 2012;35(10):1325–1334.
  • Gaus SE, Strecker RE, Tate BA, et al. Ventrolateral preoptic nucleus contains sleepactive, galaninergic neurons in multiple mammalian species. Neuroscience. 2002;115(1):285–294.
  • Gong H, McGinty D, Guzman-Marin R, et al. Activation of c-fos in GABAergic neurones in the preoptic area during sleep and in response to sleep deprivation. J Physiol. 2004;556(3):935–946.
  • Gritti I, Mainville L, Jones BE. Projections of GABAergic and cholinergic basal forebrain and GABAergic preoptic-anterior hypothalamic neurons to the posterior lateral hypothalamus of the rat. J Comp Neurol. 1994;339(2):251–268.
  • Zardetto-Smith AM, Johnson AK. Chemical topography of efferent projections from the median preoptic nucleus to pontine monoaminergic cell groups in the rat. Neurosci Lett. 1995;199(3):215–219.
  • Steininger TL, Gong H, McGinty D, et al. Subregional organization of preoptic area/anterior hypothalamic projections to arousal-related monoaminergic cell groups. J Comp Neurol. 2001;429(4):638–653.
  • Gottesmann C. GABA mechanisms and sleep. Neuroscience. 2002;111(2):231–239.
  • Ulloor J, Mavanji V, Saha S, et al. Spontaneous REM sleep is modulated by the activation of the pedunculopontine tegmental GABAB receptors in the freely moving rat. J Neurophysiol. 2004;91(4):1822–1831.
  • Campbell DT, Stanley JC. Experimental and quasiexperimental designs for research. In: Gage NL, editor. Handbook of research on teaching. Boston, US: Houhton Mifflin; 1996. p. 171–246.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.