102
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Suppression of the CD28/B7 pathway reduces the occurrence and development of myasthenia gravis and cytokine levels

, &
Pages 854-863 | Received 01 Apr 2019, Accepted 01 Apr 2020, Published online: 18 May 2020

References

  • Akaishi T, Suzuki Y, Imai T, et al. Response to treatment of myasthenia gravis according to clinical subtype. BMC Neurol. 2016;16(1):225.
  • Wintzen AR, Plomp JJ, Molenaar PC, et al. Acquired slow-channel syndrome: a form of myasthenia gravis with prolonged open time of the acetylcholine receptor channel. Ann Neurol. 1998;44(4):657–664.
  • Haran M. Muscle strength and fatigue in patients with generalized myasthenia gravis. Muscle Nerve. 2011;43(1):145–145.
  • Yu J, Zheng C, Ren X, et al. Intravenous administration of bone marrow mesenchymal stem cells benefits experimental autoimmune myasthenia gravis mice through an immunomodulatory action. Scand J Immunol. 2010;72(3):242–249.
  • Berrih-Aknin S, Le Panse R. [Myasthenia gravis and autoantibodies: Pathophysiology of the different subtypes]. Rev Med Interne. 2014;35(7):413–420.
  • Bakhiet M, Yu LY, Ozenci V, et al. Modulation of immune responses and suppression of experimental autoimmune myasthenia gravis by surgical denervation of the spleen. Clin Exp Immunol. 2006;144(2):290–298.
  • Frost A, Svendsen ML, Rahbek J, et al. Labour market participation and sick leave among patients diagnosed with myasthenia gravis in Denmark 1997-2011: a Danish nationwide cohort study. BMC Neurol. 2016;16(1):224.
  • Bhanushali MJ, Wuu J, Benatar M. Treatment of ocular symptoms in myasthenia gravis. Neurology. 2008;71(17):1335–1341.
  • Mu L, Zhang Y, Sun B, et al. Activation of the receptor for advanced glycation end products (RAGE) exacerbates experimental autoimmune myasthenia gravis symptoms. Clin Immunol. 2011;141(1):36–48.
  • Huang D, Giscombe R, Zhou Y, et al. Dinucleotide repeat expansion in the CTLA-4 gene leads to T cell hyper-reactivity via the CD28 pathway in myasthenia gravis. J Neuroimmunol. 2000;105(1):69–77.
  • Daikh D, Wofsy D, Imboden JB. The CD28-B7 costimulatory pathway and its role in autoimmune disease. J Leukoc Biol. 1997;62(2):156–162.
  • Poussin MA, Tuzun E, Goluszko E, et al. B7-1 costimulatory molecule is critical for the development of experimental autoimmune myasthenia gravis. J Immunol. 2003;170(8):4389–4396.
  • Lee W, Satyananda V, Iwase H, et al. In vitro testing of an anti-CD40 monoclonal antibody, clone 2C10, in primates and pigs. Transpl Immunol. 2015;33(3):185–191.
  • Gardner DH, Jeffery LE, Soskic B, et al. 1,25(OH)2D3 promotes the efficacy of CD28 costimulation blockade by abatacept. JI. 2015;195(6):2657–2665.
  • Krummel MF, Allison JP. Pillars article: CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. The Journal of Experimental Medicine. 1995. 182: 459-465. J Immunol. 2011;187(7): 3459–3465.
  • Walunas TL, Bakker CY, Bluestone JA. CTLA-4 ligation blocks CD28-dependent T cell activation. J Exp Med. 1996;183(6):2541–2550.
  • McIntosh KR, Linsley PS, Bacha PA, et al. Immunotherapy of experimental autoimmune myasthenia gravis: selective effects of CTLA4Ig and synergistic combination with an IL2-diphtheria toxin fusion protein. J Neuroimmunol. 1998;87(1-2):136–146.
  • McIntosh KR, Linsley PS, Drachman DB. Immunosuppression and induction of anergy by CTLA4Ig in vitro: effects on cellular and antibody responses of lymphocytes from rats with experimental autoimmune myasthenia gravis. Cell Immunol. 1995;166(1):103–112.
  • Cao Y, Amezquita RA, Kleinstein SH, et al. Autoreactive T cells from patients with myasthenia gravis are characterized by elevated IL-17, IFN-gamma, and GM-CSF and diminished IL-10 production. JI. 2016;196(5):2075–2084.
  • Lennon VA, Lindstrom JM, Seybold ME. Experimental autoimmune myasthenia: a model of myasthenia gravis in rats and guinea pigs. J Exp Med. 1975;141(6):1365–1375.
  • Chen GY, Chen CW, Fu QC, Wang XJ, et al. Set up drug lymphocyte stimulation test (3H-TdR) and observe its application in drug-induced liver injury. Zhonghua Gan Zang Bing Za Zhi. 2012;20(3):190–192.
  • Meng QF, Zhang Z, Wang YJ, et al. Astilbin ameliorates experimental autoimmune myasthenia gravis by decreased Th17 cytokines and up-regulated T regulatory cells. J Neuroimmunol. 2016;298:138–145.
  • Nessi V, Nava S, Ruocco C, et al. Naturally occurring CD4 + CD25+ regulatory T cells prevent but do not improve experimental myasthenia gravis. JI. 2010;185(9):5656–5667.
  • Sanders DB, Schleifer LS, Eldefrawi ME, et al. An immunologically induced defect of neuromuscular transmission in rats and rabbits. Ann N Y Acad Sci. 1976;274(1):319–336.
  • Robertson N. Enumerating neurology. Brain. 2000;123(4):663–664.
  • Higuchi O, Hamuro J, Motomura M, et al. Autoantibodies to low-density lipoprotein receptor-related protein 4 in myasthenia gravis. Ann Neurol. 2011;69(2):418–422.
  • Pevzner A, Schoser B, Peters K, et al. Anti-LRP4 autoantibodies in AChR- and MuSK-antibody-negative myasthenia gravis. J Neurol. 2012;259(3):427–435.
  • Scherer K, Bedlack RS, Simel DL. Does this patient have myasthenia gravis?. JAMA. 2005;293(15):1906–1914.
  • Alahgholi-Hajibehzad M, Kasapoglu P, Jafari R, et al. The role of T regulatory cells in immunopathogenesis of myasthenia gravis: implications for therapeutics. Expert Rev Clin Immunol. 2015;11(7):859–870.
  • Ahmadi SM, Holzl MA, Mayer E, et al. CTLA4-Ig preserves thymus-derived T regulatory cells. Transplantation. 2014;98(11):1158–1164.
  • Walunas TL, Lenschow DJ, Bakker CY, et al. CTLA-4 can function as a negative regulator of T cell activation. Immunity. 1994;1(5):405–413.
  • Waterhouse P, Penninger JM, Timms E, et al. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science. 1995;270(5238):985–988.
  • Watts TH. Staying alive: T cell costimulation, CD28, and Bcl-xL. JI.2010; 185(7):3785–3787.
  • Camperio C, Muscolini M, Volpe E, et al. CD28 ligation in the absence of TCR stimulation up-regulates IL-17A and pro-inflammatory cytokines in relapsing-remitting multiple sclerosis T lymphocytes. Immunol Lett. 2014;158(1-2):134–142.
  • Dalakas MC. Novel future therapeutic options in myasthenia gravis. Autoimmun Rev. 2013;12(9):936–941.
  • Vincent A. Unravelling the pathogenesis of myasthenia gravis. Nat Rev Immunol. 2002;2(10):797–804.
  • Corrales-Rodriguez L, Cardona AF, Arrieta O, et al. P2.03: treatment of malignant pleural mesothelioma beyond first-line among?hispanics (meso-clicap. J Thorac Oncol. 2016;11(10):S217–S218.
  • Christadoss P, Lindstrom J, Munro S, et al. Muscle acetylcholine receptor loss in murine experimental autoimmune myasthenia gravis: correlated with cellular, humoral and clinical responses. J Neuroimmunol. 1985;8(1):29–41.
  • Graus Y, Meng F, Vincent A, et al. Sequence analysis of anti-AChR antibodies in experimental autoimmune myasthenia gravis. J Immunol. 1995;154(12):6382–6396.
  • Wang HB, Shi FD, Li H, et al. Anti-CTLA-4 antibody treatment triggers determinant spreading and enhances murine myasthenia gravis. J Immunol. 2001; 166(10):6430–6436.
  • Christadoss P, Poussin M, Deng C. Animal models of myasthenia gravis. Clin Immunol. 2000;94(2):75–87.
  • Reynolds J, Tam FW, Chandraker A, et al. CD28-B7 blockade prevents the development of experimental autoimmune glomerulonephritis. J Clin Invest. 2000;105(5):643–651.
  • Cutolo M, Paolino S, Pizzorni C, et al. Effects of combined treatments with CTLA4-IG (abatacept), dexamethasone and methotrexate on cultured human macrophages. Clin Exp Rheumatol. 2016;34(3):500–506.
  • Zhu P, Chen YF, Chen XP, et al. Mechanisms of survival prolongation of murine cardiac allografts using the treatment of CTLA4-Ig and MR1. Transplant Proc. 2008;40(5):1618–1624.
  • Israel-Assayag E, Fournier M, Cormier Y. Blockade of T cell costimulation by CTLA4-Ig inhibits lung inflammation in murine hypersensitivity pneumonitis. J Immunol. 1999;163(12):6794–6799.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.