178
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Humanin protects cortical neurons from calyculin A-induced neurotoxicities by increasing PP2A activity and SOD

, , , , , & show all
Pages 527-535 | Received 02 Aug 2019, Accepted 28 Mar 2020, Published online: 22 May 2020

References

  • Jeong S. Molecular and cellular basis of neurodegeneration in Alzheimer’s disease. Mol Cells. 2017;40(9):613–620.
  • Calsolaro V, Edison P. Neuroinflammation in Alzheimer's disease: current evidence and future directions. Alzheimers Dement. 2016;12(6):719–732.
  • Kolarova M, García-Sierra F, Bartos A, et al. Structure and pathology of tau protein in Alzheimer disease. Int J Alzheimers Dis. 2012;2012:731526.
  • Rodríguez-Martín T, Cuchillo-Ibáñez I, Noble W, et al. Tau phosphorylation affects its axonal transport and degradation. Neurobiol Aging. 2013;34(9):2146–2157.
  • Ballatore C, Brunden KR, Huryn DM, et al. Microtubule stabilizing agents as potential treatment for Alzheimer's disease and related neurodegenerative tauopathies. J Med Chem. 2012;55(21):8979–8996.
  • Gong CX, Liu F, Grundke-Iqbal I, et al. Dysregulation of protein phosphorylation/dephosphorylation in Alzheimer's disease: a therapeutic target. J Biomed Biotechnol. 2006;2006(3):31825.
  • Liu Z, Li T, Li P, et al. The ambiguous relationship of oxidative stress, tau hyperphosphorylation, and autophagy dysfunction in Alzheimer's disease. Oxid Med Cell Longev. 2015;2015:352723.
  • Gandy JC, Melendez-Ferro M, Bijur GN, et al. Glycogen synthase kinase-3β (GSK3β) expression in a mouse model of Alzheimer's disease: a light and electron microscopy study. Synapse. 2013;67(6):313–327.
  • López-Tobón A, Castro-Álvarez JF, Piedrahita D, et al. Silencing of CDK5 as potential therapy for Alzheimer's disease. Rev Neurosci. 2011;22(2):143–152.
  • Corrêa SA, Eales KL. The Role of p38 MAPK and Its substrates in neuronal plasticity and neurodegenerative disease. J Signal Transduct. 2012;2012:649079.
  • Zhang CE, Tian Q, Wei W, et al. Homocysteine induces tau phosphorylation by inactivating protein phosphatase 2A in rat hippocampus. Neurobiol Aging. 2008;29(11):1654–1665.
  • Liu F, Grundke-Iqbal I, Iqbal K, et al. Contributions of protein phosphatases PP1, PP2A, PP2B and PP5 to the regulation of tau phosphorylation. Eur J Neurosci. 2005;22(8):1942–1950.
  • Luque-Contreras D, Carvajal K, Toral-Rios D, et al. Oxidative stress and metabolic syndrome: cause or consequence of Alzheimer's disease? Oxid Med Cell Longev. 2014;2014:497802.
  • Martínez E, Navarro A, Ordóñez C, et al. Oxidative stress induces apolipoprotein D overexpression in hippocampus during aging and Alzheimer's disease. J Alzheimers Dis. 2013;36(1):129–144.
  • Zhao Y, Zhao B. Oxidative stress and the pathogenesis of Alzheimer's disease. Oxid Med Cell Longev. 2013;2013:316523.
  • Mondragón-Rodríguez S, Perry G, Zhu X, et al. Phosphorylation of tau protein as the link between oxidative stress, mitochondrial dysfunction, and connectivity failure: implications for Alzheimer's disease. Oxid Med Cell Longev. 2013;2013:940603.
  • Xiong YF, Chen Q, Chen J, et al. Melatonin reduces the impairment of axonal transport and axonopathy induced by calyculin A. J Pineal Res. 2011;50(3):319–327.
  • Liu X, Zhou J, Abid MD, et al. Berberine attenuates axonal transport impairment and axonopathy induced by Calyculin A in N2a cells. PLoS One. 2014;9(4):e93974.
  • Hashimoto Y, Niikura T, Tajima H, et al. A rescue factor abolishing neuronal cell death by a wide spectrum of familial Alzheimer's disease genes and Abeta. Proc Natl Acad Sci USA. 2001;98(11):6336–6341.
  • Matsuoka M, Hashimoto Y, Aiso S, et al. Humanin and colivelin: neuronal-death-suppressing peptides for Alzheimer's disease and amyotrophic lateral sclerosis. CNS Drug Rev. 2006;12(2):113–122.
  • Niikura T, Sidahmed E, Hirata-Fukae C, et al. A humanin derivative reduces amyloid beta accumulation and ameliorates memory deficit in triple transgenic mice. PLoS One. 2011;6(1):e16259.
  • Yang X, Zhang H, Wu J, et al. Humanin attenuates NMDA-induced excitotoxicity by inhibiting ROS-dependent JNK/p38 MAPK pathway. Int J Mol Sci. 2018;19(10):E2982.
  • Zhao ST, Huang XT, Zhang C, et al. Humanin protects cortical neurons from ischemia and reperfusion injury by the increased activity of superoxide dismutase. Neurochem Res. 2012;37(1):153–160.
  • Ko HW, Han KS, Kim EY, et al. Synergetic activation of p38 mitogen-activated protein kinase and caspase-3-like proteases for execution of calyculin A-induced apoptosis but not N-Methyl-d-Aspartate-induced necrosis in mouse cortical neurons. J Neurochem. 2000;74(6):2455–2461.
  • Yu G, Li Y, Tian Q, et al. Berberine attenuates calyculin A-induced cytotoxicity and Tau hyperphosphorylation in HEK293 cells. J Alzheimers Dis. 2011;24(3):525–535.
  • Barage SH, Sonawane KD. Amyloid cascade hypothesis: pathogenesis and therapeutic strategies in Alzheimer's disease. Neuropeptides. 2015;52:1–18.
  • Iqbal K, Grundke-Iqbal I. Alzheimer neurofibrillary degeneration: significance, etiopathogenesis, therapeutics and prevention. J Cell Mol Med. 2008;12(1):38–55.
  • Gong CX, Grundke-Iqbal I, Iqbal K. Targeting tau protein in Alzheimer’s disease. Drugs Aging. 2010;27(5):351–365.
  • Martin L, Latypova X, Wilson CM, et al. Tau protein phosphatases in Alzheimer's disease: the leading role of PP2A. Ageing Res Rev. 2013;12(1):39–49.
  • Gratuze M, Julien J, Petry FR, et al. Insulin deprivation induces PP2A inhibition and tau hyperphosphorylation in hTau mice, a model of Alzheimer's disease-like tau pathology . Sci Rep. 2017;7:46359.
  • Sun ZG, Chen LP, Wang FW, et al. Protective effects of ginsenoside Rg1 against hydrogen peroxide-induced injury in human neuroblastoma cells. Neural Regen Res. 2016;11(7):1159–1164.
  • Hung KS, Hwang SL, Liang CL, et al. Calpain inhibitor inhibits p35-p25-Cdk5 activation, decreases tau hyperphosphorylation, and improves neurological function after spinal cord hemisection in rats. J Neuropathol Exp Neurol. 2005;64(1):15–26.
  • Borza LR. A review on the cause-effect relationship between oxidative stress and toxic proteins in the pathogenesis of neurodegenerative diseases. Rev Med Chir Soc Med Nat IASI. 2014;118(1):19–27.
  • Alavi Naini SM, Soussi-Yanicostas N. Tau hyperphosphorylation and oxidative stress, a critical vicious circle in neurodegenerative tauopathies? Oxid Med Cell Longev. 2015;2015:151979.
  • Wang L, Jiang Q, Chu J, et al. Expression of Tau40 induces activation of cultured rat microglial cells. PLoS One. 2013;8(10):e76057.
  • Jomova K, Vondrakova D, Lawson M, et al. Metals, oxidative stress and neurodegenerative disorders. Mol Cell Biochem. 2010;345(1–2):91–104.
  • Su B, Wang X, Lee HG, et al. Chronic oxidative stress causes increased tau phosphorylation in M17 neuroblastoma cells. Neurosci Lett. 2010;468(3):267–271.
  • Pérez M, Cuadros R, Smith MA, et al. Phosphorylated, but not native, tau protein assembles following reaction with the lipid peroxidation product, 4-hydroxy-2-nonenal. FEBS Lett. 2000;486(3):270–274.
  • Cui AL, Zhang YH, Li JZ, et al. Humanin rescues cultured rat cortical neurons from NMDA-induced toxicity through the alleviation of mitochondrial dysfunction. Drug Des Devel Ther. 2017;11:1243–1253.
  • Sreekumar PG, Ishikawa K, Spee C, et al. The mitochondrial-derived peptide humanin protects RPE cells from oxidative stress, senescence, and mitochondrial dysfunction. Invest Ophthalmol Vis Sci. 2016;57(3):1238–1253.
  • Thummasorn S, Apaijai N, Kerdphoo S, et al. Humanin exerts cardioprotection against cardiac ischemia/reperfusion injury through attenuation of mitochondrial dysfunction. Cardiovasc Ther. 2016;34(6):404–414.
  • Thummasorn S, Shinlapawittayatorn K, Chattipakorn SC, et al. High-dose humanin analogue applied during ischemia exerts cardioprotection against ischemia/reperfusion injury by reducing mitochondrial dysfunction. Cardiovasc Ther. 2017;35(5):e12289.
  • Klein EL, Cui LG, Gong ZW, et al. A Humanin analog decreases oxidative stress and preserves mitochondrial integrity in cardiac myoblasts. Biochem Biophys Res Commun. 2013;440(2):197–203.
  • Wang X, Liu XL, Zhao YN, Sun HY, et al. Cytoprotective role of S14G-humanin (HNG) in ultraviolet-B induced epidermal stem cells injury. Biomed Pharmacother. 2019;110:248–253.
  • Gao GS, Li Y, Zhai H, et al. Humanin analogue, S14G-humanin, has neuroprotective effects against oxygen glucose deprivation/reoxygenation by reactivating Jak2/Stat3 signaling through the PI3K/AKT pathway. Exp Ther Med. 2017;14(4):3926–3934.
  • Zhang X, Urbieta-Caceres VH, Eirin A, et al. Humanin prevents intra-renal microvascular remodeling and inflammation in hypercholesterolemic ApoE deficient mice. Life Sci. 2012;91(5–6):199–206.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.